Chào mừng các em học sinh đến với bài giải chi tiết bài tập 2.39 trang 84 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và phương pháp giải bài tập hiệu quả.
Nếu \(\vec a = (1;1;0)\), \(\vec b = (1;1; - 3)\) thì \(\cos (\vec a,\vec b)\) bằng: A. \(\frac{{\sqrt {22} }}{{11}}\). B. \(\frac{{11}}{2}\). C. \(\frac{{11}}{{\sqrt {22} }}\). D. \(\frac{2}{{11}}\).
Đề bài
Nếu \(\vec a = (1;1;0)\), \(\vec b = (1;1; - 3)\) thì \(\cos (\vec a,\vec b)\) bằng:
A. \(\frac{{\sqrt {22} }}{{11}}\).
B. \(\frac{{11}}{2}\).
C. \(\frac{{11}}{{\sqrt {22} }}\).
D. \(\frac{2}{{11}}\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức cosin giữa hai vectơ: \(\cos (\vec a,\vec b) = \frac{{\vec a \cdot \vec b}}{{|\vec a||\vec b|}}\), trong đó: \(|\vec a| = \sqrt {x_a^2 + y_a^2 + z_a^2} \) và \(|\vec b| = \sqrt {x_b^2 + y_b^2 + z_b^2} \).
Lời giải chi tiết
- Tính tích vô hướng của \(\vec a\) và \(\vec b\):
\(\vec a \cdot \vec b = 1 \cdot 1 + 1 \cdot 1 + 0 \cdot ( - 3) = 1 + 1 = 2\).
- Tính độ lớn của \(\vec a\) và \(\vec b\):
\(|\vec a| = \sqrt {{1^2} + {1^2} + {0^2}} = \sqrt 2 ,\quad |\vec b| = \sqrt {{1^2} + {1^2} + {{( - 3)}^2}} = \sqrt {11} \)
- Tính \(\cos (\vec a,\vec b)\):
\(\cos (\vec a,\vec b) = \frac{2}{{\sqrt 2 \cdot \sqrt {11} }} = \frac{2}{{\sqrt {22} }} = \frac{{2 \cdot \sqrt {22} }}{{22}} = \frac{{\sqrt {22} }}{{11}}\)
Chọn A.
Bài tập 2.39 trang 84 SGK Toán 12 tập 1 là một bài toán điển hình trong chương trình học về đạo hàm và ứng dụng của đạo hàm. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập yêu cầu chúng ta tìm cực trị của hàm số. Để làm được điều này, chúng ta cần thực hiện các bước sau:
Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số cần tìm cực trị là f(x) = x3 - 3x2 + 2.
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | ↗ | ↘ | ↗ |
Ngoài bài tập 2.39, còn rất nhiều bài tập tương tự yêu cầu tìm cực trị của hàm số. Để giải các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Khi giải bài tập về cực trị của hàm số, chúng ta cần lưu ý một số điểm sau:
Giaitoan.edu.vn là một nền tảng học Toán trực tuyến uy tín, cung cấp đầy đủ các bài giải chi tiết, dễ hiểu cho các bài tập trong SGK Toán 12 tập 1 và các tài liệu học tập khác. Chúng tôi cam kết mang đến cho các em học sinh trải nghiệm học tập tốt nhất, giúp các em nắm vững kiến thức và đạt kết quả cao trong các kỳ thi.
Hãy truy cập giaitoan.edu.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích và cùng chúng tôi chinh phục những thử thách trong môn Toán!