Logo Header
  1. Môn Toán
  2. Giải bài tập 1.45 trang 48 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 1.45 trang 48 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 1.45 trang 48 SGK Toán 12 tập 1

Chào mừng các em học sinh đến với bài giải bài tập 1.45 trang 48 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học môn Toán lớp 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Một trang trại mỗi ngày thu hoạch được một tấn rau. Mỗi ngày, nếu bán rau với giá 30000 đồng/kg thì hết rau, nếu giá bán cứ tăng thêm 1000 đồng/kg thì số rau thừa lại tăng thêm 20 kg . Số rau thừa này được bán để làm thức ăn cho gia súc với giá 2000 đồng/kg. Hỏi số tiền bán rau nhiều nhất mà trang trại có thể thu được mỗi ngày là bao nhiêu? A. 32420000 đồng. B. 32400000 đồng. C. 34400000 đồng. D. 32240000 đồng.

Đề bài

Một trang trại mỗi ngày thu hoạch được một tấn rau. Mỗi ngày, nếu bán rau với giá 30000 đồng/kg thì hết rau, nếu giá bán cứ tăng thêm 1000 đồng/kg thì số rau thừa lại tăng thêm 20 kg . Số rau thừa này được bán để làm thức ăn cho gia súc với giá 2000 đồng/kg. Hỏi số tiền bán rau nhiều nhất mà trang trại có thể thu được mỗi ngày là bao nhiêu?

A. 32420000 đồng.

B. 32400000 đồng.

C. 34400000 đồng.

D. 32240000 đồng.

Phương pháp giải - Xem chi tiếtGiải bài tập 1.45 trang 48 SGK Toán 12 tập 1 - Cùng khám phá 1

- Đặt biến số và biểu thức liên quan.

- Thiết lập hàm doanh thu dựa trên biến số vừa đặt.

- Tìm giá trị \(x\) để doanh thu đạt cực đại.

- Tính doanh thu tối đa.

Lời giải chi tiết

Gọi 𝑥 là số lần giá bán tăng thêm 1000 đồng/kg.

Giá bán rau là 30000 + 1000𝑥 đồng/kg.

Số rau thừa là 20𝑥 kg (do mỗi lần tăng giá, số rau thừa tăng thêm 20 kg).

Số rau bán hết là 1000 − 20𝑥 kg (do mỗi lần tăng giá, số rau bán hết giảm 20 kg).

Doanh thu từ rau bán hết với giá 30000 + 1000𝑥 đồng/kg

\({R_1}(x) = (1000 - 20x)(30000 + 1000x)\)

Doanh thu từ rau thừa bán làm thức ăn gia súc là:\({R_2}(x) = 20x.2000\)

Tổng doanh thu là:

\(\begin{array}{l}R(x) = {R_1}(x) + {R_2}(x) = (1000 - 20x)(30000 + 1000x) + 40000x\\R(x) = 30000000 + 1000000x - 600000x - 20000{x^2} + 40000x\\R(x) = 30000000 + 440000x - 20000{x^2}\end{array}\)

Nhận thấy hàm số \(R(x) = 30000000 + 440000x - 20000{x^2}\) là một hàm bậc hai có dạng \(a{x^2} + bx + c\)với \(a = - 20000,b = 440000,c = 30000000.\)

Giá trị 𝑥 tại đỉnh của parabol (tức là giá trị R(𝑥) đạt cực đại) được tính bằng công thức: \(x = - \frac{b}{{2a}} = - \frac{{440000}}{{2.( - 20000)}} = 11\)

Thay \(x = 11\) vào R(𝑥):

\(\begin{array}{l}R(11) = - {20000.11^2} + 440000.11 + 30000000\\R(11) = - 20000.121 + 4840000 + 30000000\\R(11) = - 2420000 + 4840000 + 30000000\\R(11) = 32420000\end{array}\)

Vậy số tiền bán rau nhiều nhất mà trang tại có thể thu được mỗi ngày là 32420000 đồng.

Chọn A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.45 trang 48 SGK Toán 12 tập 1 - Cùng khám phá đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.45 trang 48 SGK Toán 12 tập 1: Phân tích chi tiết và hướng dẫn giải

Bài tập 1.45 trang 48 SGK Toán 12 tập 1 yêu cầu học sinh vận dụng kiến thức về đạo hàm để khảo sát hàm số. Cụ thể, bài tập thường xoay quanh việc tìm đạo hàm, xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến, cực trị của hàm số, và cuối cùng là vẽ đồ thị hàm số.

Phần 1: Đề bài và phân tích yêu cầu

Trước khi đi vào giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ cho một hàm số và yêu cầu học sinh thực hiện các bước khảo sát hàm số như đã nêu ở trên.

Phần 2: Hướng dẫn giải chi tiết

  1. Bước 1: Tìm tập xác định của hàm số. Tập xác định là tập hợp tất cả các giá trị của x mà tại đó hàm số có nghĩa.
  2. Bước 2: Tính đạo hàm cấp nhất của hàm số. Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm f'(x).
  3. Bước 3: Tìm các điểm tới hạn. Giải phương trình f'(x) = 0 để tìm các điểm x mà tại đó đạo hàm bằng 0.
  4. Bước 4: Lập bảng biến thiên. Dựa vào dấu của đạo hàm f'(x) trên các khoảng xác định, ta có thể xác định khoảng đồng biến, nghịch biến của hàm số.
  5. Bước 5: Xác định cực trị của hàm số. Sử dụng dấu của đạo hàm cấp hai hoặc xét dấu đạo hàm cấp nhất để xác định cực đại, cực tiểu của hàm số.
  6. Bước 6: Vẽ đồ thị hàm số. Dựa vào các thông tin đã thu thập được, ta có thể vẽ đồ thị hàm số một cách chính xác.

Phần 3: Ví dụ minh họa

Giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2. Chúng ta sẽ áp dụng các bước trên để giải bài tập này.

  • Tập xác định: D = R
  • Đạo hàm cấp nhất: y' = 3x2 - 6x
  • Điểm tới hạn: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Bảng biến thiên:
    x-∞02+∞
    y'+-+
    y
  • Cực trị: Hàm số đạt cực đại tại x = 0, y = 2 và đạt cực tiểu tại x = 2, y = -2.

Phần 4: Lưu ý khi giải bài tập

Khi giải bài tập về khảo sát hàm số, học sinh cần lưu ý một số điểm sau:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Lập bảng biến thiên một cách cẩn thận và chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.

Phần 5: Luyện tập thêm

Để nắm vững kiến thức và kỹ năng giải bài tập về khảo sát hàm số, học sinh nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Giaitoan.edu.vn cung cấp nhiều bài tập luyện tập khác với lời giải chi tiết, giúp các em tự tin hơn trong quá trình học tập.

Hy vọng bài giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải bài tập 1.45 trang 48 SGK Toán 12 tập 1. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12