Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 của giaitoan.edu.vn. Trong bài viết này, chúng ta sẽ cùng nhau giải chi tiết các bài tập trong mục 2 trang 68, 69 SGK Toán 12 tập 2.
Mục tiêu của chúng ta là nắm vững kiến thức, hiểu rõ phương pháp giải và áp dụng thành thạo vào các bài tập tương tự. Hãy cùng bắt đầu nhé!
Cho đường thẳng d có vector chỉ phương (vec a) và mặt phẳng ((alpha )) có vector pháp tuyến (vec n). Gọi d' là hình chiếu của d trên ((alpha )). Gọi (phi ) là góc giữa d và ((alpha )), còn (phi ') là góc giữa (vec a) và (vec n).
Trả lời câu hỏi Luyện tập 2 trang 69 SGK Toán 12 Cùng khám phá
Trong không gian Oxyz, tính góc giữa đường thẳng \(d':\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}x = - 3 + 2t\;\\y = 1 + t\quad (t \in \mathbb{R})\;\\z = 2 + t\end{array}\end{array}} \right.\)và các mặt phẳng tọa độ: \((Oxy)\), \((Oxz)\), \((Oyz)\).
Phương pháp giải:
- Xác định vectơ chỉ phương \({\vec v_d} = (x',y',z')\) từ phương trình tham số của đường thẳng.
- Tùy vào mặt phẳng nào (Oxy, Oxz, Oyz), tìm vectơ pháp tuyến tương ứng của nó. - Sử dụng công thức góc giữa đường thẳng và mặt phẳng:
\(\sin \theta = \frac{{|{{\vec v}_d} \cdot \vec n|}}{{|{{\vec v}_d}||\vec n|}}\)
với \({\vec v_d}\) là vectơ chỉ phương của đường thẳng, và \(\vec n\) là vectơ pháp tuyến của mặt phẳng.
Lời giải chi tiết:
Vectơ chỉ phương của đường thẳng \(d\) là \({\vec v_d} = (2,1,1)\).
Vectơ pháp tuyến của các mặt phẳng:
- Oxy: \({\vec n_{Oxy}} = (0,0,1)\)
- Oxz: \({\vec n_{Oxz}} = (0,1,0)\)
- Oyz: \({\vec n_{Oyz}} = (1,0,0)\)
Tính góc giữa đường thẳng \(d\) và các mặt phẳng:
- Với mặt phẳng Oxy:
\(\sin \theta = \frac{{|(2,1,1) \cdot (0,0,1)|}}{{\sqrt {{2^2} + {1^2} + {1^2}} \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{{|1|}}{{\sqrt 6 \cdot 1}} = \frac{1}{{\sqrt 6 }}\)
Do đó, góc \({\theta _{Oxy}} = \arcsin \left( {\frac{1}{{\sqrt 6 }}} \right)\).
- Với mặt phẳng Oxz:
\(\sin \theta = \frac{{|(2,1,1) \cdot (0,1,0)|}}{{\sqrt {{2^2} + {1^2} + {1^2}} \cdot \sqrt {{0^2} + {1^2} + {0^2}} }} = \frac{{|1|}}{{\sqrt 6 \cdot 1}} = \frac{1}{{\sqrt 6 }}\)
Do đó, góc \({\theta _{Oxy}} = \arcsin \left( {\frac{1}{{\sqrt 6 }}} \right)\).
- Với mặt phẳng Oyz:
\(\sin \theta = \frac{{|(2,1,1) \cdot (1,0,0)|}}{{\sqrt {{2^2} + {1^2} + {1^2}} \cdot \sqrt {{1^2} + {0^2} + {0^2}} }} = \frac{{|2|}}{{\sqrt 6 \cdot 1}} = \frac{2}{{\sqrt 6 }}\)
Do đó, góc \({\theta _{Oxy}} = \arcsin \left( {\frac{1}{{\sqrt 6 }}} \right)\).
Trả lời câu hỏi Hoạt động 2 trang 68 SGK Toán 12 Cùng khám phá
Cho đường thẳng d có vector chỉ phương \(\vec a\) và mặt phẳng \((\alpha )\) có vector pháp tuyến \(\vec n\). Gọi d' là hình chiếu của d trên \((\alpha )\). Gọi \(\phi \) là góc giữa d và \((\alpha )\), còn \(\phi '\) là góc giữa \(\vec a\) và \(\vec n\).
Phương pháp giải:
Áp dụng các tính chất:
- φ và φ' là hai góc phụ nhau (φ + φ' = 90°).
- Sử dụng công thức lượng giác của góc phụ nhau.
- Góc giữa đường thẳng và mặt phẳng luôn là góc nhọn.
Lời giải chi tiết:
Góc giữa đường thẳng và mặt phẳng \((\alpha )\) là hai góc phụ nhau.
\(\varphi + \varphi ' = 90^\circ \) (góc phụ)
Vì vậy:
\(\cos \varphi = \cos (90^\circ - \varphi ') = \sin \varphi '\)
\(\sin \varphi = \sin (90^\circ - \varphi ') = \cos \varphi '\)
Do đó:
\(\cos \varphi = \cos \varphi '\) là SAI
\(\sin \varphi = \left| {\cos \varphi '} \right|\) là ĐÚNG
Trả lời câu hỏi Luyện tập 2 trang 69 SGK Toán 12 Cùng khám phá
Trong không gian Oxyz, tính góc giữa đường thẳng \(d':\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}x = - 3 + 2t\;\\y = 1 + t\quad (t \in \mathbb{R})\;\\z = 2 + t\end{array}\end{array}} \right.\)và các mặt phẳng tọa độ: \((Oxy)\), \((Oxz)\), \((Oyz)\).
Phương pháp giải:
- Xác định vectơ chỉ phương \({\vec v_d} = (x',y',z')\) từ phương trình tham số của đường thẳng.
- Tùy vào mặt phẳng nào (Oxy, Oxz, Oyz), tìm vectơ pháp tuyến tương ứng của nó. - Sử dụng công thức góc giữa đường thẳng và mặt phẳng:
\(\sin \theta = \frac{{|{{\vec v}_d} \cdot \vec n|}}{{|{{\vec v}_d}||\vec n|}}\)
với \({\vec v_d}\) là vectơ chỉ phương của đường thẳng, và \(\vec n\) là vectơ pháp tuyến của mặt phẳng.
Lời giải chi tiết:
Vectơ chỉ phương của đường thẳng \(d\) là \({\vec v_d} = (2,1,1)\).
Vectơ pháp tuyến của các mặt phẳng:
- Oxy: \({\vec n_{Oxy}} = (0,0,1)\)
- Oxz: \({\vec n_{Oxz}} = (0,1,0)\)
- Oyz: \({\vec n_{Oyz}} = (1,0,0)\)
Tính góc giữa đường thẳng \(d\) và các mặt phẳng:
- Với mặt phẳng Oxy:
\(\sin \theta = \frac{{|(2,1,1) \cdot (0,0,1)|}}{{\sqrt {{2^2} + {1^2} + {1^2}} \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{{|1|}}{{\sqrt 6 \cdot 1}} = \frac{1}{{\sqrt 6 }}\)
Do đó, góc \({\theta _{Oxy}} = \arcsin \left( {\frac{1}{{\sqrt 6 }}} \right)\).
- Với mặt phẳng Oxz:
\(\sin \theta = \frac{{|(2,1,1) \cdot (0,1,0)|}}{{\sqrt {{2^2} + {1^2} + {1^2}} \cdot \sqrt {{0^2} + {1^2} + {0^2}} }} = \frac{{|1|}}{{\sqrt 6 \cdot 1}} = \frac{1}{{\sqrt 6 }}\)
Do đó, góc \({\theta _{Oxy}} = \arcsin \left( {\frac{1}{{\sqrt 6 }}} \right)\).
- Với mặt phẳng Oyz:
\(\sin \theta = \frac{{|(2,1,1) \cdot (1,0,0)|}}{{\sqrt {{2^2} + {1^2} + {1^2}} \cdot \sqrt {{1^2} + {0^2} + {0^2}} }} = \frac{{|2|}}{{\sqrt 6 \cdot 1}} = \frac{2}{{\sqrt 6 }}\)
Do đó, góc \({\theta _{Oxy}} = \arcsin \left( {\frac{1}{{\sqrt 6 }}} \right)\).
Trả lời câu hỏi Hoạt động 2 trang 68 SGK Toán 12 Cùng khám phá
Cho đường thẳng d có vector chỉ phương \(\vec a\) và mặt phẳng \((\alpha )\) có vector pháp tuyến \(\vec n\). Gọi d' là hình chiếu của d trên \((\alpha )\). Gọi \(\phi \) là góc giữa d và \((\alpha )\), còn \(\phi '\) là góc giữa \(\vec a\) và \(\vec n\).
Phương pháp giải:
Áp dụng các tính chất:
- φ và φ' là hai góc phụ nhau (φ + φ' = 90°).
- Sử dụng công thức lượng giác của góc phụ nhau.
- Góc giữa đường thẳng và mặt phẳng luôn là góc nhọn.
Lời giải chi tiết:
Góc giữa đường thẳng và mặt phẳng \((\alpha )\) là hai góc phụ nhau.
\(\varphi + \varphi ' = 90^\circ \) (góc phụ)
Vì vậy:
\(\cos \varphi = \cos (90^\circ - \varphi ') = \sin \varphi '\)
\(\sin \varphi = \sin (90^\circ - \varphi ') = \cos \varphi '\)
Do đó:
\(\cos \varphi = \cos \varphi '\) là SAI
\(\sin \varphi = \left| {\cos \varphi '} \right|\) là ĐÚNG
Mục 2 của SGK Toán 12 tập 2 thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này một cách hiệu quả, trước tiên chúng ta cần nắm vững lý thuyết cơ bản và các công thức liên quan. Việc ôn tập kiến thức cũ là bước quan trọng để xây dựng nền tảng vững chắc.
Trang 68 thường chứa các bài tập áp dụng trực tiếp các kiến thức đã học. Các bài tập này thường có dạng:
Để giải các bài tập này, chúng ta cần:
Trang 69 thường chứa các bài tập nâng cao, đòi hỏi người học phải có khả năng vận dụng linh hoạt các kiến thức đã học. Các bài tập này thường có dạng:
Để giải các bài tập này, chúng ta cần:
Ví dụ 1: (Bài tập trang 68) Giải phương trình: 2x + 3 = 7
Lời giải:
2x + 3 = 7
2x = 7 - 3
2x = 4
x = 2
Ví dụ 2: (Bài tập trang 69) Chứng minh rằng: sin2x + cos2x = 1
Lời giải:
Ta có: sin2x + cos2x = (sin x)2 + (cos x)2
Theo định lý Pytago trong tam giác vuông, ta có: (sin x)2 + (cos x)2 = 1
Vậy, sin2x + cos2x = 1
Hy vọng rằng, với những hướng dẫn chi tiết và ví dụ minh họa trên, các em học sinh đã có thể tự tin giải các bài tập trong mục 2 trang 68, 69 SGK Toán 12 tập 2. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!