Logo Header
  1. Môn Toán
  2. Giải bài tập 5.16 trang 64 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 5.16 trang 64 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 5.16 trang 64 SGK Toán 12 tập 2

Chào mừng các em học sinh đến với bài giải chi tiết bài tập 5.16 trang 64 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.

Cho hình chóp S.ABCD với ABCD là hình bình hành, \(S(3; - 2;4)\), \(A(3;4;5)\), \(B(8;8;6)\), \(C(7;6;3)\). Viết phương trình đường thẳng chứa cạnh SB và đường thẳng chứa cạnh đáy AD của hình chóp.

Đề bài

Cho hình chóp S.ABCD với ABCD là hình bình hành, \(S(3; - 2;4)\), \(A(3;4;5)\), \(B(8;8;6)\), \(C(7;6;3)\). Viết phương trình đường thẳng chứa cạnh SB và đường thẳng chứa cạnh đáy AD của hình chóp.

Phương pháp giải - Xem chi tiếtGiải bài tập 5.16 trang 64 SGK Toán 12 tập 2 - Cùng khám phá 1

Đường thẳng qua hai điểm \(A({x_1},{y_1},{z_1})\) và \(B({x_2},{y_2},{z_2})\) có vectơ chỉ phương \(\overrightarrow {AB} = ({x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1})\). Dùng công thức để lập phương trình tham số và chính tắc.

Phương trình tham số của đường thẳng đi qua điểm \(A({x_0},{y_0},{z_0})\) và có vectơ chỉ phương \(\vec a({a_1},{a_2},{a_3})\) là:

\(\left\{ {\begin{array}{*{20}{l}}{x = {x_0} + {a_1}t}\\{y = {y_0} + {a_2}t}\\{z = {z_0} + {a_3}t}\end{array}} \right.\quad (t \in \mathbb{R})\)

Phương trình chính tắc của đường thẳng:

\(\frac{{x - {x_0}}}{{{a_1}}} = \frac{{y - {y_0}}}{{{a_2}}} = \frac{{z - {z_0}}}{{{a_3}}}\)

Nếu biết hai điểm \(A({x_1},{y_1},{z_1})\) và \(B({x_2},{y_2},{z_2})\), vectơ chỉ phương của đường thẳng là \(\overrightarrow {AB} = ({x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1})\).

Lời giải chi tiết

Phương trình đường thẳng chứa cạnh SB:

- Vectơ chỉ phương: \(\overrightarrow {SB} = (8 - 3,8 + 2,6 - 4) = (5,10,2)\)

- Phương trình tham số:

\(\left\{ {\begin{array}{*{20}{l}}{x = 3 + 5t}\\{y = - 2 + 10t}\\{z = 4 + 2t}\end{array}} \right.\quad (t \in \mathbb{R})\)

Phương trình đường thẳng chứa cạnh đáy AD:

- Điểm D: Từ hình bình hành, ta suy ra:

\(\overrightarrow {AD} = \overrightarrow {BC} \quad \Rightarrow D = A + (C - B) = (3,4,5) + ((7,6,3) - (8,8,6)) = (2,2,2)\)

- Vectơ chỉ phương: \(\overrightarrow {AD} = (2 - 3,2 - 4,2 - 5) = ( - 1, - 2, - 3)\)

- Phương trình tham số:

\(\left\{ {\begin{array}{*{20}{l}}{x = 3 - t}\\{y = 4 - 2t}\\{z = 5 - 3t}\end{array}} \right.\quad (t \in \mathbb{R})\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 5.16 trang 64 SGK Toán 12 tập 2 - Cùng khám phá đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 5.16 trang 64 SGK Toán 12 tập 2: Đạo hàm và ứng dụng

Bài tập 5.16 trang 64 SGK Toán 12 tập 2 yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để tìm cực trị và khảo sát hàm số. Đây là một dạng bài tập quan trọng, thường xuyên xuất hiện trong các kỳ thi THPT Quốc gia. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  • Định nghĩa đạo hàm: Hiểu rõ khái niệm đạo hàm của hàm số tại một điểm và trên một khoảng.
  • Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit) và các quy tắc tính đạo hàm của hàm hợp, hàm ẩn.
  • Điều kiện cần và đủ để hàm số đạt cực trị: Biết cách tìm các điểm cực trị của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Khảo sát hàm số: Biết cách xác định khoảng đồng biến, nghịch biến, cực đại, cực tiểu, điểm uốn và vẽ đồ thị hàm số.

Lời giải chi tiết bài tập 5.16 trang 64 SGK Toán 12 tập 2

Để giải bài tập 5.16 trang 64 SGK Toán 12 tập 2, chúng ta thực hiện các bước sau:

  1. Tính đạo hàm cấp một của hàm số: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm y' của hàm số đã cho.
  2. Tìm các điểm cực trị: Giải phương trình y' = 0 để tìm các điểm nghi ngờ là cực trị.
  3. Xác định loại cực trị: Sử dụng dấu của đạo hàm cấp hai hoặc xét dấu đạo hàm cấp một để xác định loại cực trị (cực đại, cực tiểu) của các điểm đã tìm được.
  4. Khảo sát hàm số: Dựa vào các điểm cực trị và khoảng đồng biến, nghịch biến để vẽ đồ thị hàm số.

Ví dụ, giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2. Ta thực hiện các bước sau:

  1. Tính đạo hàm cấp một: y' = 3x2 - 6x
  2. Tìm các điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
  3. Xác định loại cực trị:
    • Tại x = 0, y'' = 6x - 6 = -6 < 0, vậy hàm số đạt cực đại tại x = 0.
    • Tại x = 2, y'' = 6x - 6 = 6 > 0, vậy hàm số đạt cực tiểu tại x = 2.
  4. Khảo sát hàm số:
    • Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞).
    • Hàm số nghịch biến trên khoảng (0, 2).
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Ứng dụng của đạo hàm trong giải toán

Đạo hàm không chỉ được sử dụng để giải các bài toán về cực trị và khảo sát hàm số mà còn có nhiều ứng dụng quan trọng khác trong toán học và các lĩnh vực khoa học kỹ thuật:

  • Tính tốc độ biến thiên: Đạo hàm cho phép ta tính tốc độ biến thiên của một đại lượng theo một đại lượng khác.
  • Tìm điểm tối ưu: Đạo hàm được sử dụng để tìm các điểm tối ưu (cực đại, cực tiểu) của một hàm số, giúp giải quyết các bài toán tối ưu hóa.
  • Tính gần đúng: Đạo hàm được sử dụng để tính gần đúng giá trị của một hàm số tại một điểm.

Luyện tập thêm

Để nắm vững kiến thức về đạo hàm và ứng dụng, các em nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, các em có thể tham khảo các bài giảng online và các video hướng dẫn giải bài tập trên giaitoan.edu.vn.

Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 12