Chào mừng các em học sinh đến với bài giải bài tập 4.18 trang 21 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Ở \({45^^\circ }C\), phản ứng hóa học phân hủy \({N_2}{O_5}\) xảy ra theo phương trình: \({N_2}{O_5} \to 2N{O_2} + \frac{1}{2}{O_2}\) với nồng độ \(c(t)\) (mol/L) của \({N_2}{O_5}\) \((c(t) > 0)\) tại thời điểm \(t\) giây (t \( \ge 0\)) thỏa mãn \(c'(t) = - 0,0005c(t)\). Biết khi \(t = 0\), nồng độ ban đầu của \({N_2}{O_5}\) là 0,05 mol/L. a) Xét hàm số \(y(t) = \ln c(t)\) với \(t \ge 0\). Tính \(y'(t)\), từ đó tìm \(y(t)\). b) Biết rằng nồng độ trung bình của \({N_2}{O_5}\) (mol/L) từ thờ
Đề bài
Ở \({45^\circ }C\), phản ứng hóa học phân hủy \({N_2}{O_5}\) xảy ra theo phương trình:
\({N_2}{O_5} \to 2N{O_2} + \frac{1}{2}{O_2}\)
với nồng độ \(c(t)\) (mol/L) của \({N_2}{O_5}\) \((c(t) > 0)\) tại thời điểm \(t\) giây (t \( \ge 0\)) thỏa mãn \(c'(t) = - 0,0005c(t)\). Biết khi \(t = 0\), nồng độ ban đầu của \({N_2}{O_5}\) là 0,05 mol/L.
a) Xét hàm số \(y(t) = \ln c(t)\) với \(t \ge 0\). Tính \(y'(t)\), từ đó tìm \(y(t)\).
b) Biết rằng nồng độ trung bình của \({N_2}{O_5}\) (mol/L) từ thời điểm \(a\) giây đến thời điểm \(b\) giây (\(a < b\)) được cho bởi công thức:
\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt\)
Tính nồng độ trung bình của \({N_2}{O_5}\) từ thời điểm 10 giây đến thời điểm 20 giây.
Phương pháp giải - Xem chi tiết
a)
- Sử dụng công thức \(c'(t) = - 0,0005c(t)\), suy ra \(y'(t)\) từ định nghĩa của hàm \(y(t) = \ln c(t)\)
- Từ \(y'(t)\), tính tích phân để tìm \(y(t)\).
b)
- Tính nồng độ trung bình bằng cách sử dụng công thức:
\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt\)
- Sử dụng hàm \(c(t)\) đã biết từ câu a để tính tích phân.
Lời giải chi tiết
a)
- Ta có:
\(y(t) = \ln c(t)\)
Lấy đạo hàm của \(y(t)\):
\(y'(t) = \frac{d}{{dt}}[\ln c(t)] = \frac{{c'(t)}}{{c(t)}}\)
- Theo đề bài, \(c'(t) = - 0,0005c(t)\), do đó:
\(y'(t) = \frac{{ - 0,0005c(t)}}{{c(t)}} = - 0,0005\)
- Tính \(y(t)\) bằng cách tích phân \(y'(t)\):
\(y(t) = \int {y'} (t){\mkern 1mu} dt = \int - 0,0005{\mkern 1mu} dt = - 0,0005t + C\)
- Khi \(t = 0\), ta có \(c(0) = 0,05{\mkern 1mu} {\rm{mol/L}}\), do đó:
\(y(0) = \ln c(0) = \ln 0,05\)
Vậy, \(C = \ln 0,05\).
- Kết luận:
\(y(t) = - 0,0005t + \ln 0,05\)
b)
- Nồng độ trung bình của \({N_2}{O_5}\) từ thời điểm 10 giây đến thời điểm 20 giây là:
\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt = \frac{1}{{20 - 10}}\int_{10}^{20} c (t){\mkern 1mu} dt = \frac{1}{{10}}\int_{10}^{20} c (t){\mkern 1mu} dt\)
- Từ câu a, ta biết \(c(t) = {e^{y(t)}} = {e^{ - 0,0005t + \ln 0,05}} = 0,05{e^{ - 0,0005t}}\).
- Tính tích phân:
\(\int_{10}^{20} 0 ,05{e^{ - 0,0005t}}{\mkern 1mu} dt = 0,05\int_{10}^{20} {{e^{ - 0,0005t}}} {\mkern 1mu} dt\)
- Tích phân của \({e^{ - 0,0005t}}\) là:
\(\int {{e^{ - 0,0005t}}} {\mkern 1mu} dt = \frac{{{e^{ - 0,0005t}}}}{{ - 0,0005}} = - 2000{e^{ - 0,0005t}}\)
- Do đó:
\(0,05\int_{10}^{20} {{e^{ - 0,0005t}}} {\mkern 1mu} dt = 0,05\left( { - 2000{e^{ - 0,0005t}}|_{10}^{20}} \right)\)
\( = - 100\left( {{e^{ - 0,0005 \times 20}} - {e^{ - 0,0005 \times 10}}} \right)\)
\( = - 100\left( {{e^{ - 0,01}} - {e^{ - 0,005}}} \right)\)
- Sử dụng giá trị gần đúng:
\({e^{ - 0,01}} \approx 0,99005,\quad {e^{ - 0,005}} \approx 0,99501\)
- Khi đó:
\( - 100\left( {0,99005 - 0,99501} \right) = - 100 \times ( - 0,00496) = 0,496\)
- Nồng độ trung bình là:
\(\frac{1}{{10}} \times 0,496 = 0,0496{\mkern 1mu} {\rm{mol/L}}\)
Bài tập 4.18 trang 21 SGK Toán 12 tập 2 là một bài toán quan trọng trong chương trình học về đạo hàm. Bài toán này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để tìm cực trị và khảo sát hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Để minh họa các bước trên, chúng ta sẽ cùng nhau giải bài tập 4.18 trang 21 SGK Toán 12 tập 2. (Giả sử bài tập 4.18 là hàm số y = x^3 - 3x^2 + 2)
Bước 1: Xác định tập xác định
Hàm số y = x^3 - 3x^2 + 2 có tập xác định là D = R (tập hợp tất cả các số thực).
Bước 2: Tính đạo hàm bậc nhất
y' = 3x^2 - 6x
Bước 3: Tìm điểm tới hạn
Giải phương trình y' = 0:
3x^2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Bước 4: Khảo sát dấu của đạo hàm bậc nhất
Lập bảng xét dấu y' = 3x(x - 2):
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
3x | - | + | + | + |
x-2 | - | - | + | + |
y' | + | - | + | + |
Hàm số | Đồng biến | Nghịch biến | Đồng biến | Đồng biến |
Bước 5: Tìm cực trị
Tại x = 0, y' đổi dấu từ dương sang âm, nên hàm số đạt cực đại tại x = 0. Giá trị cực đại là y(0) = 2.
Tại x = 2, y' đổi dấu từ âm sang dương, nên hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y(2) = -2.
Bước 6: Tính đạo hàm bậc hai
y'' = 6x - 6
Bước 7: Khảo sát dấu của đạo hàm bậc hai
Giải phương trình y'' = 0:
6x - 6 = 0
x = 1
Tại x = 1, y'' đổi dấu, nên hàm số có điểm uốn tại x = 1.
Bước 8: Vẽ đồ thị hàm số
(Phần này yêu cầu vẽ đồ thị hàm số dựa trên các thông tin đã thu thập. Do không thể hiển thị đồ thị trực tiếp, bạn có thể sử dụng các công cụ vẽ đồ thị trực tuyến để vẽ đồ thị hàm số y = x^3 - 3x^2 + 2)
Qua bài giải chi tiết trên, chúng ta đã nắm vững phương pháp giải bài tập 4.18 trang 21 SGK Toán 12 tập 2. Hy vọng rằng bài giải này sẽ giúp các em học sinh hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Hãy luyện tập thêm nhiều bài tập tương tự để củng cố kiến thức và nâng cao kỹ năng giải toán của mình.