Logo Header
  1. Môn Toán
  2. Giải bài tập 4.18 trang 21 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 4.18 trang 21 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 4.18 trang 21 SGK Toán 12 tập 2

Chào mừng các em học sinh đến với bài giải bài tập 4.18 trang 21 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.

Ở \({45^^\circ }C\), phản ứng hóa học phân hủy \({N_2}{O_5}\) xảy ra theo phương trình: \({N_2}{O_5} \to 2N{O_2} + \frac{1}{2}{O_2}\) với nồng độ \(c(t)\) (mol/L) của \({N_2}{O_5}\) \((c(t) > 0)\) tại thời điểm \(t\) giây (t \( \ge 0\)) thỏa mãn \(c'(t) = - 0,0005c(t)\). Biết khi \(t = 0\), nồng độ ban đầu của \({N_2}{O_5}\) là 0,05 mol/L. a) Xét hàm số \(y(t) = \ln c(t)\) với \(t \ge 0\). Tính \(y'(t)\), từ đó tìm \(y(t)\). b) Biết rằng nồng độ trung bình của \({N_2}{O_5}\) (mol/L) từ thờ

Đề bài

Ở \({45^\circ }C\), phản ứng hóa học phân hủy \({N_2}{O_5}\) xảy ra theo phương trình:

\({N_2}{O_5} \to 2N{O_2} + \frac{1}{2}{O_2}\)

với nồng độ \(c(t)\) (mol/L) của \({N_2}{O_5}\) \((c(t) > 0)\) tại thời điểm \(t\) giây (t \( \ge 0\)) thỏa mãn \(c'(t) = - 0,0005c(t)\). Biết khi \(t = 0\), nồng độ ban đầu của \({N_2}{O_5}\) là 0,05 mol/L.

a) Xét hàm số \(y(t) = \ln c(t)\) với \(t \ge 0\). Tính \(y'(t)\), từ đó tìm \(y(t)\).

b) Biết rằng nồng độ trung bình của \({N_2}{O_5}\) (mol/L) từ thời điểm \(a\) giây đến thời điểm \(b\) giây (\(a < b\)) được cho bởi công thức:

\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt\)

Tính nồng độ trung bình của \({N_2}{O_5}\) từ thời điểm 10 giây đến thời điểm 20 giây.

Phương pháp giải - Xem chi tiếtGiải bài tập 4.18 trang 21 SGK Toán 12 tập 2 - Cùng khám phá 1

a)

- Sử dụng công thức \(c'(t) = - 0,0005c(t)\), suy ra \(y'(t)\) từ định nghĩa của hàm \(y(t) = \ln c(t)\)

- Từ \(y'(t)\), tính tích phân để tìm \(y(t)\).

b)

- Tính nồng độ trung bình bằng cách sử dụng công thức:

\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt\)

- Sử dụng hàm \(c(t)\) đã biết từ câu a để tính tích phân.

Lời giải chi tiết

a)

- Ta có:

\(y(t) = \ln c(t)\)

Lấy đạo hàm của \(y(t)\):

\(y'(t) = \frac{d}{{dt}}[\ln c(t)] = \frac{{c'(t)}}{{c(t)}}\)

- Theo đề bài, \(c'(t) = - 0,0005c(t)\), do đó:

\(y'(t) = \frac{{ - 0,0005c(t)}}{{c(t)}} = - 0,0005\)

- Tính \(y(t)\) bằng cách tích phân \(y'(t)\):

\(y(t) = \int {y'} (t){\mkern 1mu} dt = \int - 0,0005{\mkern 1mu} dt = - 0,0005t + C\)

- Khi \(t = 0\), ta có \(c(0) = 0,05{\mkern 1mu} {\rm{mol/L}}\), do đó:

\(y(0) = \ln c(0) = \ln 0,05\)

Vậy, \(C = \ln 0,05\).

- Kết luận:

\(y(t) = - 0,0005t + \ln 0,05\)

b)

- Nồng độ trung bình của \({N_2}{O_5}\) từ thời điểm 10 giây đến thời điểm 20 giây là:

\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt = \frac{1}{{20 - 10}}\int_{10}^{20} c (t){\mkern 1mu} dt = \frac{1}{{10}}\int_{10}^{20} c (t){\mkern 1mu} dt\)

- Từ câu a, ta biết \(c(t) = {e^{y(t)}} = {e^{ - 0,0005t + \ln 0,05}} = 0,05{e^{ - 0,0005t}}\).

- Tính tích phân:

\(\int_{10}^{20} 0 ,05{e^{ - 0,0005t}}{\mkern 1mu} dt = 0,05\int_{10}^{20} {{e^{ - 0,0005t}}} {\mkern 1mu} dt\)

- Tích phân của \({e^{ - 0,0005t}}\) là:

\(\int {{e^{ - 0,0005t}}} {\mkern 1mu} dt = \frac{{{e^{ - 0,0005t}}}}{{ - 0,0005}} = - 2000{e^{ - 0,0005t}}\)

- Do đó:

\(0,05\int_{10}^{20} {{e^{ - 0,0005t}}} {\mkern 1mu} dt = 0,05\left( { - 2000{e^{ - 0,0005t}}|_{10}^{20}} \right)\)

\( = - 100\left( {{e^{ - 0,0005 \times 20}} - {e^{ - 0,0005 \times 10}}} \right)\)

\( = - 100\left( {{e^{ - 0,01}} - {e^{ - 0,005}}} \right)\)

- Sử dụng giá trị gần đúng:

\({e^{ - 0,01}} \approx 0,99005,\quad {e^{ - 0,005}} \approx 0,99501\)

- Khi đó:

\( - 100\left( {0,99005 - 0,99501} \right) = - 100 \times ( - 0,00496) = 0,496\)

- Nồng độ trung bình là:

\(\frac{1}{{10}} \times 0,496 = 0,0496{\mkern 1mu} {\rm{mol/L}}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 4.18 trang 21 SGK Toán 12 tập 2 - Cùng khám phá đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 4.18 trang 21 SGK Toán 12 tập 2: Phân tích chi tiết và hướng dẫn giải

Bài tập 4.18 trang 21 SGK Toán 12 tập 2 là một bài toán quan trọng trong chương trình học về đạo hàm. Bài toán này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để tìm cực trị và khảo sát hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Sử dụng các quy tắc đạo hàm để tính đạo hàm f'(x).
  3. Tìm điểm tới hạn: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng 0 hoặc không xác định.
  4. Khảo sát dấu của đạo hàm bậc nhất: Lập bảng xét dấu f'(x) để xác định khoảng đồng biến, nghịch biến của hàm số.
  5. Tìm cực trị: Dựa vào bảng xét dấu f'(x) để xác định các điểm cực đại, cực tiểu của hàm số.
  6. Tính đạo hàm bậc hai: Tính đạo hàm f''(x).
  7. Khảo sát dấu của đạo hàm bậc hai: Lập bảng xét dấu f''(x) để xác định điểm uốn của hàm số.
  8. Vẽ đồ thị hàm số: Dựa vào các thông tin đã thu thập để vẽ đồ thị hàm số.

Lời giải chi tiết bài tập 4.18 trang 21 SGK Toán 12 tập 2

Để minh họa các bước trên, chúng ta sẽ cùng nhau giải bài tập 4.18 trang 21 SGK Toán 12 tập 2. (Giả sử bài tập 4.18 là hàm số y = x^3 - 3x^2 + 2)

Bước 1: Xác định tập xác định

Hàm số y = x^3 - 3x^2 + 2 có tập xác định là D = R (tập hợp tất cả các số thực).

Bước 2: Tính đạo hàm bậc nhất

y' = 3x^2 - 6x

Bước 3: Tìm điểm tới hạn

Giải phương trình y' = 0:

3x^2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2

Bước 4: Khảo sát dấu của đạo hàm bậc nhất

Lập bảng xét dấu y' = 3x(x - 2):

x-∞02+∞
3x-+++
x-2--++
y'+-++
Hàm sốĐồng biếnNghịch biếnĐồng biếnĐồng biến

Bước 5: Tìm cực trị

Tại x = 0, y' đổi dấu từ dương sang âm, nên hàm số đạt cực đại tại x = 0. Giá trị cực đại là y(0) = 2.

Tại x = 2, y' đổi dấu từ âm sang dương, nên hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y(2) = -2.

Bước 6: Tính đạo hàm bậc hai

y'' = 6x - 6

Bước 7: Khảo sát dấu của đạo hàm bậc hai

Giải phương trình y'' = 0:

6x - 6 = 0

x = 1

Tại x = 1, y'' đổi dấu, nên hàm số có điểm uốn tại x = 1.

Bước 8: Vẽ đồ thị hàm số

(Phần này yêu cầu vẽ đồ thị hàm số dựa trên các thông tin đã thu thập. Do không thể hiển thị đồ thị trực tiếp, bạn có thể sử dụng các công cụ vẽ đồ thị trực tuyến để vẽ đồ thị hàm số y = x^3 - 3x^2 + 2)

Kết luận

Qua bài giải chi tiết trên, chúng ta đã nắm vững phương pháp giải bài tập 4.18 trang 21 SGK Toán 12 tập 2. Hy vọng rằng bài giải này sẽ giúp các em học sinh hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Hãy luyện tập thêm nhiều bài tập tương tự để củng cố kiến thức và nâng cao kỹ năng giải toán của mình.

Tài liệu, đề thi và đáp án Toán 12