Chào mừng các em học sinh đến với bài giải bài tập 1.21 trang 34 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học môn Toán lớp 12, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và phương pháp giải bài tập một cách hiệu quả.
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau: a) \(y = \frac{{x - 2}}{{2x + 1}}\) b) \(y = \frac{{1 - 2x}}{{2x + 4}}\)
Đề bài
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau:
a) \(y = \frac{{x - 2}}{{2x + 1}}\)
b) \(y = \frac{{1 - 2x}}{{2x + 4}}\)
Phương pháp giải - Xem chi tiết
- Tìm tập xác định của hàm số
- Xét sự biến thiên của hàm số
- Vẽ đồ thị hàm số
Lời giải chi tiết
a)
- Tập xác định: \(D = R\backslash \{ - \frac{1}{2}\} \)
- Sự biến thiên:
Giới hạn, tiệm cận:
\(\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 2}}{{2x + 1}} = \frac{1}{2}\)
\(\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 2}}{{2x + 1}} = \frac{1}{2}\)
Suy ra đường thẳng \({\rm{y}} = \frac{1}{2}\) là đường tiệm cận ngang của đồ thị hàm số đã cho
\(\mathop {\lim }\limits_{x \to {{\frac{{ - 1}}{2}}^ + }} f(x) = \mathop {\lim }\limits_{x \to {{\frac{{ - 1}}{2}}^ + }} \frac{{x - 2}}{{2x + 1}} = - \infty \)
\(\mathop {\lim }\limits_{x \to {{\frac{{ - 1}}{2}}^ - }} f(x) = \mathop {\lim }\limits_{x \to {{\frac{{ - 1}}{2}}^ - }} \frac{{x - 2}}{{2x + 1}} = \infty \)
Suy ra đường thẳng \({\rm{x}} = \frac{{ - 1}}{2}\) là đường tiệm cận đứng của đồ thị hàm số đã cho
Ta có: \({y^\prime } = \frac{5}{{{{(2x + 1)}^2}}} > 0\forall x \in R\)
Suy ra hàm số đồng biến trên tập xác định
Bảng biến thiên:
Cực trị: Hàm số không có cực trị
- Vẽ đồ thị
Tiệm cận đứng: \(x = - \frac{1}{2}\) và tiệm cận ngang \(y = \frac{1}{2}\)
Giao với trục Oy tại điểm (0,-2)
Giao với trục Ox tại điểm (2,0)
b)
- Tập xác định: \(D = R\backslash \{ - 2\} \)
- Sự biến thiên:
Giới hạn, tiệm cận:
\(\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{2x + 4}} = - 1\)
\(\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{1 - 2x}}{{2x + 4}} = - 1\)
Suy ra đường thẳng \({\rm{y}} = - 1\) là đường tiệm cận ngang của đồ thị hàm số đã cho
\(\mathop {\lim }\limits_{x \to - {2^ + }} f(x) = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{1 - 2x}}{{2x + 4}} = \infty \)
\(\mathop {\lim }\limits_{x \to - {2^ - }} f(x) = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{1 - 2x}}{{2x + 4}} = - \infty \)
Suy ra đường thẳng \({\rm{x}} = - 2\). là đường tiệm cận đứng của đồ thị hàm số đã cho
Ta có: \({y^\prime } = \frac{{ - 10}}{{{{(2x + 4)}^2}}} < 0\forall x \in R\)
Suy ra hàm số nghịch biến trên tập xác định
Bảng biến thiên:
Cực trị: Hàm số không có cực trị
- Vẽ đồ thị
Tiệm cận đứng: \(x = - 2\) và tiệm cận ngang \(y = - 1\)
Giao với trục Oy tại điểm (0,\(\frac{1}{4}\))
Giao với trục Ox tại điểm (\(\frac{1}{2}\),0)
Bài tập 1.21 trang 34 SGK Toán 12 tập 1 yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết một bài toán thực tế. Để giải bài tập này một cách hiệu quả, chúng ta cần thực hiện các bước sau:
Giả sử bài tập 1.21 yêu cầu chúng ta tìm giá trị lớn nhất và nhỏ nhất của hàm số f(x) = x3 - 3x2 + 2 trên đoạn [-1; 3].
Bước 1: Tính đạo hàm
f'(x) = 3x2 - 6x
Bước 2: Tìm điểm cực trị
f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2.
Bước 3: Tính giá trị của hàm số tại các điểm cực trị và đầu mút của đoạn
f(-1) = (-1)3 - 3(-1)2 + 2 = -1 - 3 + 2 = -2
f(0) = 03 - 3(0)2 + 2 = 2
f(2) = 23 - 3(2)2 + 2 = 8 - 12 + 2 = -2
f(3) = 33 - 3(3)2 + 2 = 27 - 27 + 2 = 2
Bước 4: Kết luận
Giá trị lớn nhất của hàm số f(x) trên đoạn [-1; 3] là 2, đạt được tại x = 0 và x = 3.
Giá trị nhỏ nhất của hàm số f(x) trên đoạn [-1; 3] là -2, đạt được tại x = -1 và x = 2.
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Bài tập 1.21 trang 34 SGK Toán 12 tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm. Bằng cách nắm vững các bước giải và lưu ý khi giải bài tập, các em có thể tự tin giải quyết các bài toán tương tự một cách hiệu quả.