Logo Header
  1. Môn Toán
  2. Giải bài tập 5.40 trang 85 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 5.40 trang 85 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 5.40 trang 85 SGK Toán 12 tập 2

Chào mừng các em học sinh đến với bài giải chi tiết bài tập 5.40 trang 85 SGK Toán 12 tập 2. Bài tập này thuộc chương trình học Toán 12, tập trung vào kiến thức về số phức và các phép toán liên quan.

Giaitoan.edu.vn cung cấp lời giải chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự. Hãy cùng chúng tôi khám phá lời giải chi tiết ngay sau đây!

Trong các chương trình đồ hoạ máy tính, để tạo ảo giác theo đúng phối cảnh, các vật ở càng gần thì càng lớn hơn các vật ở xa, các hình ảnh ba chiều trong bộ nhớ của máy tính được chiếu lên một màn hình hình chữ nhật từ điểm nhìn của mắt hoặc máy chiếu.

Đề bài

Trong các chương trình đồ hoạ máy tính, để tạo ảo giác theo đúng phối cảnh, các vật ở càng gần thì càng lớn hơn các vật ở xa, các hình ảnh ba chiều trong bộ nhớ của máy tính được chiếu lên một màn hình hình chữ nhật từ điểm nhìn của mắt hoặc máy chiếu.

Không gian quan sát, một phần của không gian được nhìn thấy là vùng nằm trong bốn mặt phẳng đi qua điểm nhìn và một đường biên của màn hình. Nếu vật trong cảnh vật mở rộng vượt quá bốn mặt phẳng này thì chúng phải được cắt xén trước khi dữ liệu điểm ảnh được gửi đến màn hình. Vì vậy các mặt phẳng này được gọi là mặt phẳng cắt. Giả sử màn hình được biểu diễn bởi hình chữ nhật trong mặt phẳng Oyz với các đỉnh (0; 400; 0), (0; −400; 0), (0; 400; 600), (0; −400; 600) và máy quay được đặt tại (1000; 0; 0). Tính góc giữa màn hình và các mặt phẳng cắt.

Giải bài tập 5.40 trang 85 SGK Toán 12 tập 2 - Cùng khám phá 1

Phương pháp giải - Xem chi tiếtGiải bài tập 5.40 trang 85 SGK Toán 12 tập 2 - Cùng khám phá 2

- Xác định mặt phẳng chứa màn hình dựa trên các điểm đã cho.

- Xác định các mặt phẳng cắt đi qua điểm máy quay và các cạnh của màn hình.

- Tính góc giữa mặt phẳng chứa màn hình và từng mặt phẳng cắt bằng công thức góc giữa hai mặt phẳng: \(\cos \theta = \frac{{|{{\vec n}_{{\rm{screen}}}} \cdot {{\vec n}_{{\rm{cut}}}}|}}{{|{{\vec n}_{{\rm{screen}}}}||{{\vec n}_{{\rm{cut}}}}|}}\).

Lời giải chi tiết

- Các điểm \(A = (0;400;0)\), \(B = (0; - 400;0)\), \(C = (0;400;600)\), và \(D = (0; - 400;600)\) đều nằm trong mặt phẳng Oyz, do đó phương trình của mặt phẳng chứa màn hình là: \(x = 0\)

- Vectơ pháp tuyến của mặt phẳng này là \(\overrightarrow {{n_1}} = (1;0;0)\).

- Điểm máy quay \(O = (1000;0;0)\).

* Mặt phẳng cắt qua điểm O và cạnh AB:

- Vectơ \(\overrightarrow {OA} = ( - 1000;400;0)\), \(\overrightarrow {OB} = ( - 1000; - 400;0)\)

- Vectơ pháp tuyến \(\overrightarrow {{n_2}} \) của mặt phẳng này là tích có hướng của \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \):

\(\overrightarrow {{n_2}} = \overrightarrow {OA} \times \overrightarrow {OB} = (0;0;800000)\)

- Đơn giản hóa, ta có \(\overrightarrow {{n_2}} = (0;0;1)\).

* Mặt phẳng cắt qua điểm O và cạnh BC:

- Vectơ \(\overrightarrow {OB} = ( - 1000; - 400;0)\), \(\overrightarrow {OC} = ( - 1000;400;600)\)

- Vectơ pháp tuyến \(\overrightarrow {{n_3}} \) của mặt phẳng này:

\(\overrightarrow {{n_3}} = \overrightarrow {OB} \times \overrightarrow {OC} = ( - 240000;600000; - 800000)\)

- Đơn giản hóa, ta có \(\overrightarrow {{n_3}} = ( - 6;15; - 20)\).

* Mặt phẳng cắt qua điểm O và cạnh AD:

- Vectơ \(\overrightarrow {OA} = ( - 1000;400;0)\), \(\overrightarrow {OD} = ( - 1000; - 400;600)\)

- Vectơ pháp tuyến \(\overrightarrow {{n_4}} \) của mặt phẳng này là tích có hướng của \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \):

\(\overrightarrow {{n_4}} = \overrightarrow {OA} \times \overrightarrow {OD} = (240000;600000;800000)\)

- Đơn giản hóa, ta có \(\overrightarrow {{n_4}} = (6;15;20)\).

* Mặt phẳng cắt qua điểm O và cạnh DC:

- Vectơ \(\overrightarrow {OD} = ( - 1000; - 400;600)\), \(\overrightarrow {OC} = ( - 1000;400;600)\)

- Vectơ pháp tuyến \(\overrightarrow {{n_5}} \) của mặt phẳng này:

\(\overrightarrow {{n_5}} = \overrightarrow {OB} \times \overrightarrow {OC} = ( - 480000;0; - 800000)\)

- Đơn giản hóa, ta có \(\overrightarrow {{n_5}} = ( - 3;0; - 5)\).

* Tính góc giữa mặt phẳng chứa màn hình và các mặt phẳng cắt:

- Góc giữa mặt phẳng chứa màn hình và mặt phẳng qua cạnh AB:

\(\cos {\theta _1} = \frac{{|\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} |}}{{|\overrightarrow {{n_1}} ||\overrightarrow {{n_2}} |}} = \frac{{|(1;0;0) \cdot (0;0;1)|}}{{1 \cdot 1}} = 0\) \( \Rightarrow {\theta _1} = {90^\circ }\).

- Góc giữa mặt phẳng chứa màn hình và mặt phẳng qua cạnh BC:

\(\cos {\theta _2} = \frac{{|\overrightarrow {{n_1}} \cdot \overrightarrow {{n_3}} |}}{{|\overrightarrow {{n_1}} ||\overrightarrow {{n_3}} |}} = \frac{{|(1;0;0) \cdot ( - 6;15; - 20)|}}{{1 \cdot \sqrt {{{( - 6)}^2} + {{15}^2} + {{( - 20)}^2}} }} = \frac{{ - 6}}{{\sqrt {661} }} \approx 0,2334\) \( \Rightarrow {\theta _2} \approx 103,{5^\circ }\).

- Góc giữa mặt phẳng chứa màn hình và mặt phẳng qua cạnh AD:

\(\cos {\theta _2} = \frac{{|\overrightarrow {{n_1}} \cdot \overrightarrow {{n_4}} |}}{{|\overrightarrow {{n_1}} ||\overrightarrow {{n_4}} |}} = \frac{{|(1;0;0) \cdot (6;15;20)|}}{{1 \cdot \sqrt {{6^2} + {{15}^2} + {{20}^2}} }} = \frac{6}{{\sqrt {661} }} \approx 0,2334\) \( \Rightarrow {\theta _3} \approx 76,{5^\circ }\).

- Góc giữa mặt phẳng chứa màn hình và mặt phẳng qua cạnh DC:

\(\cos {\theta _2} = \frac{{|\overrightarrow {{n_1}} \cdot \overrightarrow {{n_5}} |}}{{|\overrightarrow {{n_1}} ||\overrightarrow {{n_5}} |}} = \frac{{|(1;0;0) \cdot ( - 3;0; - 5)|}}{{1 \cdot \sqrt {{{( - 3)}^2} + {{( - 5)}^2}} }} = \frac{{ - 3}}{{\sqrt {34} }} \approx 0,5145\) \( \Rightarrow {\theta _5} \approx 120,{96^\circ }\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 5.40 trang 85 SGK Toán 12 tập 2 - Cùng khám phá đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 5.40 trang 85 SGK Toán 12 tập 2: Phân tích chi tiết và hướng dẫn giải

Bài tập 5.40 trang 85 SGK Toán 12 tập 2 yêu cầu chúng ta tìm số phức z thỏa mãn một điều kiện nhất định. Để giải bài tập này, chúng ta cần nắm vững các kiến thức cơ bản về số phức, bao gồm:

  • Định nghĩa số phức: Một số phức có dạng z = a + bi, trong đó a là phần thực và b là phần ảo.
  • Các phép toán trên số phức: Cộng, trừ, nhân, chia số phức.
  • Module của số phức: |z| = √(a² + b²).
  • Số phức liên hợp: z̄ = a - bi.

Lời giải chi tiết bài tập 5.40 trang 85 SGK Toán 12 tập 2

Để giải bài tập này, chúng ta sẽ thực hiện các bước sau:

  1. Phân tích đề bài: Xác định rõ yêu cầu của bài toán, các điều kiện đã cho và các biến cần tìm.
  2. Sử dụng kiến thức: Áp dụng các kiến thức về số phức đã học để xây dựng phương trình hoặc hệ phương trình.
  3. Giải phương trình/hệ phương trình: Tìm ra giá trị của các biến.
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả tìm được thỏa mãn các điều kiện của bài toán.

(Ở đây sẽ là lời giải chi tiết cụ thể của bài tập 5.40, bao gồm các bước giải, công thức sử dụng và kết quả cuối cùng. Ví dụ: Giả sử bài toán yêu cầu tìm z sao cho |z - (1+i)| = 2. Lời giải sẽ bao gồm việc đặt z = a + bi, thay vào phương trình, biến đổi và tìm ra mối quan hệ giữa a và b, sau đó tìm ra các giá trị cụ thể của a và b.)

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài tập 5.40, còn rất nhiều bài tập tương tự về số phức trong SGK Toán 12 tập 2. Các bài tập này thường yêu cầu:

  • Tìm phần thực, phần ảo của số phức.
  • Thực hiện các phép toán trên số phức.
  • Giải phương trình bậc hai với hệ số phức.
  • Tìm tập hợp các điểm biểu diễn số phức thỏa mãn một điều kiện nào đó.

Để giải các bài tập này, các em cần:

  • Nắm vững định nghĩa và các phép toán trên số phức.
  • Sử dụng các công thức liên quan đến module và số phức liên hợp.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Ứng dụng của số phức trong thực tế

Số phức không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng quan trọng trong thực tế, đặc biệt trong các lĩnh vực:

  • Kỹ thuật điện: Phân tích mạch điện xoay chiều.
  • Vật lý: Cơ học lượng tử, xử lý tín hiệu.
  • Toán học ứng dụng: Giải các bài toán về dao động, sóng.

Tổng kết

Bài tập 5.40 trang 85 SGK Toán 12 tập 2 là một bài tập điển hình về số phức. Việc giải bài tập này giúp các em củng cố kiến thức về số phức và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các em sẽ tự tin hơn trong việc học tập môn Toán.

Khái niệmGiải thích
Số phứcBiểu thức có dạng a + bi, với a, b là số thực và i là đơn vị ảo (i² = -1).
Module của số phứcKhoảng cách từ điểm biểu diễn số phức đến gốc tọa độ.
Số phức liên hợpĐổi dấu phần ảo của số phức.

Tài liệu, đề thi và đáp án Toán 12