Chào mừng các em học sinh đến với bài giải bài tập 5.43 trang 86 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1, với A(0; 0; 0), D(1; 0; 0), B(0; 1; 0), A’(0; 0; 1). a) Chứng minh \(A'C \bot (AB'D')\). b) Chứng minh \((AB'D')//(C'BD)\)và tính khoảng cách giữa hai mặt phẳng \((AB'D')\) và \((C'BD)\). c) Tính côsin của góc giữa hai mặt phẳng \((DA'C')\) và \((ABB'A')\).
Đề bài
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1, với A(0; 0; 0), D(1; 0; 0), B(0; 1; 0), A’(0; 0; 1).
a) Chứng minh \(A'C \bot (AB'D')\).
b) Chứng minh \((AB'D')//(C'BD)\)và tính khoảng cách giữa hai mặt phẳng \((AB'D')\) và \((C'BD)\).
c) Tính côsin của góc giữa hai mặt phẳng \((DA'C')\) và \((ABB'A')\).
Phương pháp giải - Xem chi tiết
a) Chứng minh đường thẳng vuông góc với mặt phẳng:
- Tìm véc-tơ pháp tuyến của mặt phẳng bằng tích có hướng của hai véc-tơ trong mặt phẳng.
- Kiểm tra tích vô hướng giữa véc-tơ chỉ phương của đường thẳng và véc-tơ pháp tuyến của mặt phẳng. Nếu tích vô hướng bằng 0, đường thẳng vuông góc với mặt phẳng.
b) Chứng minh hai mặt phẳng song song và tính khoảng cách:
- Tìm véc-tơ pháp tuyến của từng mặt phẳng. Nếu hai véc-tơ pháp tuyến cùng phương, hai mặt phẳng song song.
- Tính khoảng cách giữa hai mặt phẳng song song bằng công thức khoảng cách từ điểm đến mặt phẳng.
c) Tính góc giữa hai mặt phẳng:
- Tìm véc-tơ pháp tuyến của mỗi mặt phẳng.
- Dùng công thức để tính góc giữa hai mặt phẳng.
Lời giải chi tiết
Các đỉnh còn lại có toạ độ là: \(C(1;1;0)\), \(B'(0;1;1)\), \(C'(1;1;1)\), \(D'(1;0;1)\)
a) Chứng minh \(A'C \bot (AB'D')\)
Véc-tơ pháp tuyến của \((AB'D')\):
\(\overrightarrow {AB'} = (0;1;1),\quad \overrightarrow {AD'} = (1;0;1)\)
\({\vec n_{(AB'D')}} = \overrightarrow {AB'} \times \overrightarrow {AD'} = (1;1; - 1)\)
Mà ta có: \(\overrightarrow {A'C} = (1;1; - 1)\)trùng với vec-tơ pháp tuyến của \((AB'D')\)
Vậy \(A'C \bot (AB'D')\).
b) Chứng minh \((AB'D')\parallel (C'BD)\) và tính khoảng cách
Véc-tơ pháp tuyến của \((C'BD)\):
\(\overrightarrow {C'B} = ( - 1;0; - 1),\quad \overrightarrow {C'D} = (0; - 1; - 1)\)
\({\vec n_{(C'BD)}} = \overrightarrow {C'B} \times \overrightarrow {C'D} = ( - 1; - 1;1)\)
Hai véc-tơ pháp tuyến \({\vec n_{(AB'D')}}\) và \({\vec n_{(C'BD)}}\) cùng phương nên \((AB'D')\parallel (C'BD)\).
* Khoảng cách giữa hai mặt phẳng:
Chọn điểm \(A(0,0,0)\) thuộc \((AB'D')\).
Phương trình \((C'BD)\): \(1.(x - 0) - 1.(y - 1) - (z - 0) = 0 \Leftrightarrow x - y - z + 1 = 0\).
\(d = \frac{{|0 \cdot 1 - 0 \cdot 1 - 0 \cdot ( - 1) + 1|}}{{\sqrt {{{( - 1)}^2} + {{( - 1)}^2} + {1^2}} }} = \frac{1}{{\sqrt 3 }}\)
c) Tính \(\cos \theta \) giữa hai mặt phẳng \((DA'C')\) và \((ABB'A')\)
- Véc-tơ pháp tuyến của \((DA'C')\):
\(\overrightarrow {DA'} = ( - 1;0;1),\quad \overrightarrow {DC'} = (0;1;1)\)
\({\vec n_{(DA'C')}} = \overrightarrow {DA'} \times \overrightarrow {DC'} = ( - 1;1; - 1)\)
Véc-tơ pháp tuyến của \((ABB'A')\):
\(\overrightarrow {AB} = (0,1,0),\quad \overrightarrow {AA'} = (0,0,1)\)
\({\vec n_{(ABB'A')}} = \overrightarrow {AB} \times \overrightarrow {AA'} = (1,0,0)\)
Tính \(\cos \theta \):
\({\vec n_{(DA'C')}} \cdot {\vec n_{(ABB'A')}} = ( - 1;1; - 1) \cdot (1;0;0) = - 1\)
\(\cos \theta = \frac{{| - 1|}}{{\sqrt 3 \cdot 1}} = \frac{1}{{\sqrt 3 }}\)
Bài tập 5.43 trang 86 SGK Toán 12 tập 2 thường liên quan đến việc tìm cực trị của hàm số hoặc giải các bài toán tối ưu hóa sử dụng đạo hàm. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Giả sử bài tập 5.43 yêu cầu tìm giá trị lớn nhất của hàm số f(x) = -x3 + 3x2 - 2 trên đoạn [-1; 3]. Chúng ta sẽ áp dụng các bước trên như sau:
Ngoài bài tập 5.43, SGK Toán 12 tập 2 còn nhiều bài tập tương tự liên quan đến ứng dụng đạo hàm để giải quyết các bài toán thực tế. Một số dạng bài tập thường gặp bao gồm:
Để giải quyết các bài tập này, các em cần nắm vững các kiến thức về đạo hàm, các quy tắc tính đạo hàm, và các phương pháp xét dấu đạo hàm. Ngoài ra, việc luyện tập thường xuyên với các bài tập khác nhau sẽ giúp các em rèn luyện kỹ năng và nâng cao khả năng giải quyết vấn đề.
Khi giải các bài tập về đạo hàm, các em cần lưu ý một số điểm sau:
Ngoài SGK Toán 12 tập 2, các em có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức và kỹ năng giải bài tập về đạo hàm:
Hy vọng với bài giải chi tiết và các hướng dẫn trên, các em sẽ tự tin giải quyết bài tập 5.43 trang 86 SGK Toán 12 tập 2 và các bài tập tương tự một cách hiệu quả. Chúc các em học tập tốt!