Chào mừng các em học sinh đến với bài giải bài tập 1.23 trang 35 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12 tập 1, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Một người chèo thuyền từ điểm A trên bờ một con sông thẳng, rộng 3 km và muốn đến điểm B, cách bờ đối diện 8 km về phía hạ lưu, càng nhanh càng tốt như Hình 1.39. Người ấy có thể chèo thuyền qua sông đến điểm C rồi chạy bộ đến B, hoặc anh ta có thể chèo thuyền đến D nào đó giữa C và B rồi chạy bộ đến B. Tốc độ chèo thuyền là 6 km/h và tốc độ chạy bộ là 8 km/h. Tìm thời gian ngắn nhất mà người này có thể đi từ A đến B (bỏ qua vận tốc của nước và làm tròn kết quả đến hàng phần trăm).
Đề bài
Một người chèo thuyền từ điểm A trên bờ một con sông thẳng, rộng 3 km và muốn đến điểm B, cách bờ đối diện 8 km về phía hạ lưu, càng nhanh càng tốt như Hình 1.39. Người ấy có thể chèo thuyền qua sông đến điểm C rồi chạy bộ đến B, hoặc anh ta có thể chèo thuyền đến D nào đó giữa C và B rồi chạy bộ đến B. Tốc độ chèo thuyền là 6 km/h và tốc độ chạy bộ là 8 km/h. Tìm thời gian ngắn nhất mà người này có thể đi từ A đến B (bỏ qua vận tốc của nước và làm tròn kết quả đến hàng phần trăm).
Phương pháp giải - Xem chi tiết
- Đặt biến 𝑥 là khoảng cách từ điểm C đến điểm D.
- Thiết lập hàm số 𝑇(𝑥) thời gian tổng quát bao gồm thời gian chèo thuyền và thời gian chạy bộ.
- Khảo sát hàm số 𝑇(𝑥).
- Tính thời gian tại giá trị 𝑥 tìm được để đảm bảo đó là thời gian ngắn nhất.
Lời giải chi tiết
- Gọi 𝑥 là khoảng cách từ điểm C đến điểm D (BC≥𝑥≥0).
- Quãng đường từ A đến D là: \(\sqrt {{3^2} + {x^2}} = \sqrt {9 + {x^2}} \)km.
- Thời gian chèo thuyền là: \(\frac{{\sqrt {9 + {x^2}} }}{6}\) giờ.
- Thời gian chạy bộ từ D đến B là:\(\frac{{8 - x}}{8}\) giờ.
→ Tổng thời gian: \[T(x) = \frac{{\sqrt {9 + {x^2}} }}{6} + \frac{{8 - x}}{8}\]
- Khảo sát hàm số 𝑇(𝑥):
Tính đạo hàm: \({T^\prime }(x) = \frac{1}{6} \cdot \frac{x}{{\sqrt {9 + {x^2}} }} - \frac{1}{8}\)
Giải phương trình \({T^\prime }(x) = 0\) :
\(\begin{array}{l}\frac{x}{{6\sqrt {9 + {x^2}} }} = \frac{1}{8}\\ \Rightarrow 8x = 6\sqrt {9 + {x^2}} \\ \Leftrightarrow 64{x^2} = 36\left( {9 + {x^2}} \right)\\ \Leftrightarrow 64{x^2} = 324 + 36{x^2}\\ \Leftrightarrow 28{x^2} = 324\\ \Rightarrow x = \sqrt {\frac{{324}}{{28}}} = \frac{{924}}{{\sqrt 7 }} \approx 3.4\end{array}\)
Bảng biến thiên:
Thời gian ngắn nhất mà người này có thể đi từ A đến B là 1.33 giờ.
Bài tập 1.23 trang 35 SGK Toán 12 tập 1 là một bài toán quan trọng trong chương trình học về đạo hàm và ứng dụng của đạo hàm. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
(Đề bài sẽ được chèn vào đây - ví dụ: Cho hàm số y = f(x) có đạo hàm f'(x) = (x-1)(x+2). Tìm các điểm cực trị của hàm số.)
(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng và kết luận. Ví dụ:
Giải:
1. Tập xác định của hàm số là D = R.
2. Đạo hàm cấp một của hàm số là f'(x) = (x-1)(x+2) = x2 + x - 2.
3. Giải phương trình f'(x) = 0, ta được x = 1 và x = -2.
4. Xét dấu đạo hàm:
x | -∞ | -2 | 1 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | + |
f(x) | NB | ĐC | TC | NB |
(NB: Nghịch biến, ĐC: Đồng biến, TC: Tăng, Giảm)
5. Kết luận: Hàm số đạt cực đại tại x = -2 với giá trị f(-2) = ... và đạt cực tiểu tại x = 1 với giá trị f(1) = ...
)
Để củng cố kiến thức về đạo hàm và ứng dụng, các em có thể tham khảo và giải thêm các bài tập tương tự sau:
Việc nắm vững phương pháp giải bài tập về đạo hàm và ứng dụng là rất quan trọng để các em có thể giải quyết các bài toán phức tạp hơn trong chương trình Toán 12. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em sẽ tự tin hơn trong việc học tập và ôn luyện môn Toán.