Logo Header
  1. Môn Toán
  2. Giải bài tập 4.27 trang 36 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 4.27 trang 36 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 4.27 trang 36 SGK Toán 12 tập 2

Chào mừng các em học sinh đến với bài giải bài tập 4.27 trang 36 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Tính các tích phân sau: a) \(\int_0^1 {(3x + 1)} (x + 3){\mkern 1mu} dx\) b) \(\int_{ - 5}^0 {({3^{x + 1}} - 2{e^x})} {\mkern 1mu} dx\) c) \(\int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{\cos 2x}}{{{{\sin }^2}x{{\cos }^2}x}}} {\mkern 1mu} dx\) d) \(\int_1^2 {{2^x}} {3^{x - 1}}{\mkern 1mu} dx\)

Đề bài

Tính các tích phân sau:

a) \(\int_0^1 {(3x + 1)} (x + 3){\mkern 1mu} dx\)

b) \(\int_{ - 5}^0 {({3^{x + 1}} - 2{e^x})} {\mkern 1mu} dx\)

c) \(\int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{\cos 2x}}{{{{\sin }^2}x{{\cos }^2}x}}} {\mkern 1mu} dx\)

d) \(\int_1^2 {{2^x}} {3^{x - 1}}{\mkern 1mu} dx\)

Phương pháp giải - Xem chi tiếtGiải bài tập 4.27 trang 36 SGK Toán 12 tập 2 - Cùng khám phá 1

Sử dụng các công thức cơ bản về tích phân:

- \(\int {{x^n}} dx = \frac{{{x^{n + 1}}}}{{n + 1}}\)

- \(\int {{e^x}} dx = {e^x}\);

- \(\int {{a^x}} dx = \frac{{{a^x}}}{{\ln a}}\)

- Các phép nhân đa thức, các hàm mũ, và lượng giác có thể cần sử dụng các phương pháp đơn giản hóa.

Lời giải chi tiết

a)

\(\int_0^1 {(3x + 1)} (x + 3){\mkern 1mu} dx = \int_0^1 {(3{x^2} + 10x + 3)} {\mkern 1mu} dx\)

Tính từng tích phân:

\(\int 3 {x^2}{\mkern 1mu} dx = {x^3},\quad \int 1 0x{\mkern 1mu} dx = 5{x^2},\quad \int 3 {\mkern 1mu} dx = 3x\)

Vậy tích phân là:

\(\left[ {{x^3} + 5{x^2} + 3x} \right]_0^1 = 9\)

b)

\(\int_{ - 5}^0 {({3^{x + 1}} - 2{e^x})} {\mkern 1mu} dx\)

Tính từng tích phân:

\(\int {{3^{x + 1}}} {\mkern 1mu} dx = \frac{{{3^{x + 1}}}}{{\ln 3}}\)

\(\int 2 {e^x}{\mkern 1mu} dx = 2{e^x}\)

Tích phân là:

\(\left[ {\frac{{{3^{x + 1}}}}{{\ln 3}} - 2{e^x}} \right]_{ - 5}^0 = \left( {\frac{{{3^1}}}{{\ln 3}} - 2{e^0}} \right) - \left( {\frac{{{3^{ - 4}}}}{{\ln 3}} - 2{e^{ - 5}}} \right)\)

c)

\(\int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{\cos 2x}}{{{{\sin }^2}x{{\cos }^2}x}}} {\mkern 1mu} dx\)

Đầu tiên, ta sử dụng các công thức lượng giác để đơn giản hóa biểu thức:

\(\frac{{\cos 2x}}{{{{\sin }^2}x{{\cos }^2}x}} = \frac{{(2{{\cos }^2}x - 1)}}{{{{\sin }^2}x{{\cos }^2}x}}\)

Ta tách thành hai phần:

\(I = 2\int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\sin }^2}x}}} {\mkern 1mu} dx - \int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\sin }^2}x{{\cos }^2}x}}} {\mkern 1mu} dx\)

\(\int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\sin }^2}x}}} {\mkern 1mu} dx = \left[ { - \cot x} \right]_{\frac{\pi }{6}}^{\frac{\pi }{3}} = - \frac{1}{{\sqrt 3 }} + \sqrt 3 = \frac{2}{{\sqrt 3 }}\)

\(\int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\sin }^2}x{{\cos }^2}x}}} dx = \int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{4}{{{{\sin }^2}2x}}} dx = 4.\left[ { - \frac{1}{2}\cot 2x} \right]_{\frac{\pi }{6}}^{\frac{\pi }{3}} = 4.\frac{1}{2}.\left( {\frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 3 }}} \right) = \frac{4}{{\sqrt 3 }}\)

Cuối cùng, kết quả của tích phân là:

\(I = 0\)

d)

\(\int_1^2 {{2^x}} {3^{x - 1}}{\mkern 1mu} dx\)

Sử dụng tích phân của hàm mũ:

\(\int {{2^x}} {3^{x - 1}}{\mkern 1mu} dx = \frac{1}{3}\int {({6^x})} {\mkern 1mu} dx = \frac{{{6^x}}}{{3\ln 6}}\)

Tính tích phân:

\(\left[ {\frac{{{6^x}}}{{3\ln 6}}} \right]_1^2 = \frac{{{6^2}}}{{3\ln 6}} - \frac{6}{{3\ln 6}} = \frac{{12}}{{\ln 3}} - \frac{2}{{\ln 6}} = \frac{{10}}{{\ln 6}}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 4.27 trang 36 SGK Toán 12 tập 2 - Cùng khám phá đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 4.27 trang 36 SGK Toán 12 tập 2: Phân tích chi tiết và hướng dẫn giải

Bài tập 4.27 trang 36 SGK Toán 12 tập 2 yêu cầu học sinh vận dụng kiến thức về đạo hàm để khảo sát hàm số. Cụ thể, bài toán thường liên quan đến việc tìm khoảng đồng biến, nghịch biến, cực trị và vẽ đồ thị hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần thực hiện các bước sau:

  1. Xác định tập xác định của hàm số: Tìm các giá trị của x sao cho hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Sử dụng các quy tắc đạo hàm để tính đạo hàm f'(x) của hàm số.
  3. Tìm các điểm tới hạn: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng 0 hoặc không xác định.
  4. Khảo sát sự biến thiên của hàm số: Lập bảng biến thiên để xác định khoảng đồng biến, nghịch biến và cực trị của hàm số.
  5. Tính đạo hàm bậc hai: Tính đạo hàm f''(x) để xác định điểm uốn của hàm số.
  6. Vẽ đồ thị hàm số: Dựa vào các thông tin đã thu thập được, vẽ đồ thị hàm số.

Ví dụ minh họa giải bài tập 4.27 trang 36 SGK Toán 12 tập 2

Giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2. Chúng ta sẽ tiến hành giải bài tập theo các bước đã nêu:

  1. Tập xác định: Hàm số xác định trên R.
  2. Đạo hàm bậc nhất: y' = 3x2 - 6x.
  3. Điểm tới hạn: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
  4. Bảng biến thiên:
    x-∞02+∞
    y'+-+
    y
  5. Đạo hàm bậc hai: y'' = 6x - 6.
  6. Điểm uốn: 6x - 6 = 0 => x = 1.

Từ bảng biến thiên, ta thấy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0 với giá trị y = 2 và đạt cực tiểu tại x = 2 với giá trị y = -2. Điểm uốn của hàm số là (1; 0).

Lưu ý khi giải bài tập 4.27 trang 36 SGK Toán 12 tập 2

  • Luôn kiểm tra lại các bước tính toán đạo hàm để tránh sai sót.
  • Sử dụng bảng biến thiên một cách chính xác để xác định khoảng đồng biến, nghịch biến và cực trị của hàm số.
  • Chú ý đến các điểm không xác định của hàm số và đạo hàm.
  • Vẽ đồ thị hàm số một cách cẩn thận để kiểm tra lại kết quả khảo sát.

Ứng dụng của việc giải bài tập 4.27 trang 36 SGK Toán 12 tập 2

Việc giải bài tập 4.27 trang 36 SGK Toán 12 tập 2 không chỉ giúp học sinh nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số mà còn rèn luyện kỹ năng giải bài tập toán học một cách hiệu quả. Đây là nền tảng quan trọng để học sinh có thể tiếp cận và giải quyết các bài toán phức tạp hơn trong chương trình học Toán 12 và các kỳ thi quan trọng.

Tổng kết

Bài tập 4.27 trang 36 SGK Toán 12 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Bằng cách thực hiện các bước giải bài tập một cách cẩn thận và chính xác, học sinh có thể nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12