Chào mừng các em học sinh đến với bài giải chi tiết bài tập 5.15 trang 64 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Viết phương trình tham số và phương trình chính tắc (nếu có) của đường thẳng \(d\) trong mỗi trường hợp sau: a) \(d\) đi qua điểm \(M(5;4;1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\). b) \(d\) đi qua hai điểm \(P(1;2;3)\) và \(Q(5;4;4)\). c) \(d\) đi qua điểm \(B(2;0; - 3)\) và song song với đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 3 + 3t}\\{z = 4}\end{array}} \right.\). d) \(d\) đi qua điểm \(A( - 2;3;1)\) và song song với đường thẳng \(\Delta ':\fr
Đề bài
Viết phương trình tham số và phương trình chính tắc (nếu có) của đường thẳng \(d\) trong mỗi trường hợp sau:
a) \(d\) đi qua điểm \(M(5;4;1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\).
b) \(d\) đi qua hai điểm \(P(1;2;3)\) và \(Q(5;4;4)\).
c) \(d\) đi qua điểm \(B(2;0; - 3)\) và song song với đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 3 + 3t}\\{z = 4}\end{array}} \right.\).
d) \(d\) đi qua điểm \(A( - 2;3;1)\) và song song với đường thẳng \(\Delta ':\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z - 4}}{3}\).
Phương pháp giải - Xem chi tiết
Phương trình tham số của đường thẳng đi qua điểm \(A({x_0},{y_0},{z_0})\) và có vectơ chỉ phương \(\vec a({a_1},{a_2},{a_3})\) là:
\(\left\{ {\begin{array}{*{20}{l}}{x = {x_0} + {a_1}t}\\{y = {y_0} + {a_2}t}\\{z = {z_0} + {a_3}t}\end{array}} \right.\quad (t \in \mathbb{R})\)
Phương trình chính tắc của đường thẳng:
\(\frac{{x - {x_0}}}{{{a_1}}} = \frac{{y - {y_0}}}{{{a_2}}} = \frac{{z - {z_0}}}{{{a_3}}}\)
Nếu biết hai điểm \(A({x_1},{y_1},{z_1})\) và \(B({x_2},{y_2},{z_2})\), vectơ chỉ phương của đường thẳng là \(\overrightarrow {AB} = ({x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1})\).
Lời giải chi tiết
a) Đường thẳng \(d\) đi qua điểm \(M(5;4;1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\):
- Phương trình tham số:
\(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 4 - 3t}\\{z = 1 + t}\end{array}} \right.\quad (t \in \mathbb{R})\)
- Phương trình chính tắc:
\(\frac{{x - 5}}{2} = \frac{{y - 4}}{{ - 3}} = z - 1\)
b) Đường thẳng \(d\) đi qua hai điểm \(P(1;2;3)\) và \(Q(5;4;4)\):
- Vectơ chỉ phương:
\(\overrightarrow {PQ} = (5 - 1;4 - 2;4 - 3) = (4;2;1)\)
- Phương trình tham số:
\(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 4t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\quad (t \in \mathbb{R})\)
- Phương trình chính tắc:
\(\frac{{x - 1}}{4} = \frac{{y - 2}}{2} = z - 3\)
c) Đường thẳng \(d\) đi qua điểm \(B(2;0; - 3)\) và song song với đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 3 + 3t}\\{z = 4}\end{array}} \right.\)
- Vectơ chỉ phương của đường thẳng \(\Delta \): \(\vec a = (2,3,0)\)
- Phương trình tham số của đường thẳng \(d\):
\(\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = 0 + 3t}\\{z = - 3}\end{array}} \right.\quad (t \in \mathbb{R})\)
- Phương trình chính tắc:
\(\frac{{x - 2}}{2} = \frac{y}{3}\)
d) Đường thẳng \(d\) đi qua điểm \(A( - 2;3;1)\) và song song với đường thẳng \(\Delta ':\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z - 4}}{3}\)
- Vectơ chỉ phương của \(\Delta '\): \(\vec a = (2,1,3)\)
- Phương trình tham số của đường thẳng \(d\):
\(\left\{ {\begin{array}{*{20}{l}}{x = - 2 + 2t}\\{y = 3 + t}\\{z = 1 + 3t}\end{array}} \right.\quad (t \in \mathbb{R})\)
- Phương trình chính tắc:
\(\frac{{x + 2}}{2} = \frac{{y - 3}}{1} = \frac{{z - 1}}{3}\)
Bài tập 5.15 trang 64 SGK Toán 12 tập 2 là một bài toán điển hình về ứng dụng đạo hàm để tìm cực trị của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, điều kiện cần và đủ để hàm số đạt cực trị, cũng như các bước giải bài toán tìm cực trị.
Đề bài yêu cầu tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một khoảng cho trước. Để làm được điều này, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2 trên khoảng [-1; 3].
Khi giải các bài tập về cực trị, học sinh cần chú ý các điểm sau:
Để củng cố kiến thức về ứng dụng đạo hàm để tìm cực trị, các em có thể tham khảo và giải thêm các bài tập tương tự trong SGK Toán 12 tập 2 và các tài liệu luyện thi THPT Quốc gia. Việc luyện tập thường xuyên sẽ giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Bài tập 5.15 trang 64 SGK Toán 12 tập 2 là một bài toán quan trọng về ứng dụng đạo hàm để tìm cực trị của hàm số. Hy vọng với lời giải chi tiết và những lưu ý quan trọng trên, các em học sinh sẽ hiểu rõ hơn về phương pháp giải bài tập này và đạt kết quả tốt trong các kỳ thi sắp tới.