Logo Header
  1. Môn Toán
  2. Giải bài tập 2.37 trang 84 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 2.37 trang 84 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 2.37 trang 84 SGK Toán 12 tập 1

Chào mừng các em học sinh đến với bài giải chi tiết bài tập 2.37 trang 84 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.

Cho ba lực \({\vec F_1},{\vec F_2},{\vec F_3}\) lần lượt có cường độ \(2{\rm{N}},4{\rm{N}},5{\rm{N}}\) được đặt vào chất điểm \(M\). Biết rằng góc tạo bởi hai lực bất kỳ trong ba lực đều bằng \({60^\circ }\). Cường độ của hợp lực tác dụng lên \(M\) là: A. \(45{\rm{N}}\). B. \(\sqrt {45} {\rm{N}}\). C. \(\sqrt {83} {\rm{N}}\). D. \(83{\rm{N}}\).

Đề bài

Cho ba lực \({\vec F_1},{\vec F_2},{\vec F_3}\) lần lượt có cường độ \(2{\rm{N}},4{\rm{N}},5{\rm{N}}\) được đặt vào chất điểm \(M\). Biết rằng góc tạo bởi hai lực bất kỳ trong ba lực đều bằng \({60^\circ }\). Cường độ của hợp lực tác dụng lên \(M\) là:

A. \(45{\rm{N}}\).

B. \(\sqrt {45} {\rm{N}}\).

C. \(\sqrt {83} {\rm{N}}\).

D. \(83{\rm{N}}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 2.37 trang 84 SGK Toán 12 tập 1 - Cùng khám phá 1

- Sử dụng định lý cosin cho tam giác tạo bởi ba vectơ lực: \(|\vec F| = \sqrt {\vec F_1^2 + \vec F_2^2 + \vec F_3^2 + 2({{\vec F}_1} \cdot {{\vec F}_2} + {{\vec F}_2} \cdot {{\vec F}_3} + {{\vec F}_3} \cdot {{\vec F}_1})} \)

- Định lý cosin: \({\vec F_i} \cdot {\vec F_j} = {F_i}{F_j}\cos \theta \)

Lời giải chi tiết

Cường độ của hợp lực:

\(|\vec F| = \sqrt {{2^2} + {4^2} + {5^2} + 2(2 \cdot 4 \cdot \cos {{60}^\circ } + 4 \cdot 5 \cdot \cos {{60}^\circ } + 5 \cdot 2 \cdot \cos {{60}^\circ })} \)

\(|\vec F| = \sqrt {4 + 16 + 25 + 2(4 + 10 + 5)} = \sqrt {45} = \sqrt {83} \)

Chọn D.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2.37 trang 84 SGK Toán 12 tập 1 - Cùng khám phá đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2.37 trang 84 SGK Toán 12 tập 1: Phân tích và Lời giải chi tiết

Bài tập 2.37 trang 84 SGK Toán 12 tập 1 yêu cầu chúng ta vận dụng kiến thức về đạo hàm của hàm số để tìm cực trị và khảo sát hàm số. Đây là một dạng bài tập quan trọng, thường xuyên xuất hiện trong các kỳ thi THPT Quốc gia. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm cấp một: Sử dụng các quy tắc đạo hàm để tính đạo hàm f'(x).
  3. Tìm điểm tới hạn: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng 0 hoặc không xác định.
  4. Khảo sát dấu của đạo hàm: Lập bảng xét dấu f'(x) để xác định khoảng đồng biến, nghịch biến của hàm số.
  5. Tìm cực trị: Dựa vào bảng xét dấu f'(x) để xác định các điểm cực đại, cực tiểu của hàm số.
  6. Kết luận: Tổng hợp các kết quả để đưa ra kết luận về tính đơn điệu, cực trị và giá trị lớn nhất, nhỏ nhất của hàm số.

Lời giải chi tiết bài tập 2.37 trang 84 SGK Toán 12 tập 1

Để minh họa, chúng ta sẽ cùng nhau giải bài tập 2.37 trang 84 SGK Toán 12 tập 1. (Giả sử bài tập có nội dung cụ thể là: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.)

Bước 1: Xác định tập xác định

Hàm số y = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.

Bước 2: Tính đạo hàm cấp một

y' = 3x2 - 6x

Bước 3: Tìm điểm tới hạn

Giải phương trình y' = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2 là các điểm tới hạn.

Bước 4: Khảo sát dấu của đạo hàm

Lập bảng xét dấu y' = 3x(x - 2):

x-∞02+∞
3x-+++
x-2--++
y'+-++
yĐồng biếnNghịch biếnĐồng biếnĐồng biến

Bước 5: Tìm cực trị

Dựa vào bảng xét dấu, ta thấy:

  • Tại x = 0, y' đổi dấu từ dương sang âm, nên hàm số đạt cực đại tại x = 0. Giá trị cực đại là y(0) = 2.
  • Tại x = 2, y' đổi dấu từ âm sang dương, nên hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y(2) = -2.

Bước 6: Kết luận

Hàm số y = x3 - 3x2 + 2 đạt cực đại tại x = 0, với giá trị là 2 và đạt cực tiểu tại x = 2, với giá trị là -2.

Mở rộng và Bài tập tương tự

Để hiểu sâu hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế, các em có thể tham khảo thêm các bài tập tương tự trong SGK Toán 12 tập 1 và các tài liệu ôn thi THPT Quốc gia. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Ngoài ra, các em có thể tìm hiểu thêm về các ứng dụng khác của đạo hàm, như việc tìm khoảng đơn điệu, khoảng lồi lõm của hàm số, và giải các bài toán tối ưu hóa.

Tài liệu, đề thi và đáp án Toán 12