Chào mừng các em học sinh đến với bài giải chi tiết bài tập 2.37 trang 84 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Cho ba lực \({\vec F_1},{\vec F_2},{\vec F_3}\) lần lượt có cường độ \(2{\rm{N}},4{\rm{N}},5{\rm{N}}\) được đặt vào chất điểm \(M\). Biết rằng góc tạo bởi hai lực bất kỳ trong ba lực đều bằng \({60^\circ }\). Cường độ của hợp lực tác dụng lên \(M\) là: A. \(45{\rm{N}}\). B. \(\sqrt {45} {\rm{N}}\). C. \(\sqrt {83} {\rm{N}}\). D. \(83{\rm{N}}\).
Đề bài
Cho ba lực \({\vec F_1},{\vec F_2},{\vec F_3}\) lần lượt có cường độ \(2{\rm{N}},4{\rm{N}},5{\rm{N}}\) được đặt vào chất điểm \(M\). Biết rằng góc tạo bởi hai lực bất kỳ trong ba lực đều bằng \({60^\circ }\). Cường độ của hợp lực tác dụng lên \(M\) là:
A. \(45{\rm{N}}\).
B. \(\sqrt {45} {\rm{N}}\).
C. \(\sqrt {83} {\rm{N}}\).
D. \(83{\rm{N}}\).
Phương pháp giải - Xem chi tiết
- Sử dụng định lý cosin cho tam giác tạo bởi ba vectơ lực: \(|\vec F| = \sqrt {\vec F_1^2 + \vec F_2^2 + \vec F_3^2 + 2({{\vec F}_1} \cdot {{\vec F}_2} + {{\vec F}_2} \cdot {{\vec F}_3} + {{\vec F}_3} \cdot {{\vec F}_1})} \)
- Định lý cosin: \({\vec F_i} \cdot {\vec F_j} = {F_i}{F_j}\cos \theta \)
Lời giải chi tiết
Cường độ của hợp lực:
\(|\vec F| = \sqrt {{2^2} + {4^2} + {5^2} + 2(2 \cdot 4 \cdot \cos {{60}^\circ } + 4 \cdot 5 \cdot \cos {{60}^\circ } + 5 \cdot 2 \cdot \cos {{60}^\circ })} \)
\(|\vec F| = \sqrt {4 + 16 + 25 + 2(4 + 10 + 5)} = \sqrt {45} = \sqrt {83} \)
Chọn D.
Bài tập 2.37 trang 84 SGK Toán 12 tập 1 yêu cầu chúng ta vận dụng kiến thức về đạo hàm của hàm số để tìm cực trị và khảo sát hàm số. Đây là một dạng bài tập quan trọng, thường xuyên xuất hiện trong các kỳ thi THPT Quốc gia. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Để minh họa, chúng ta sẽ cùng nhau giải bài tập 2.37 trang 84 SGK Toán 12 tập 1. (Giả sử bài tập có nội dung cụ thể là: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.)
Bước 1: Xác định tập xác định
Hàm số y = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.
Bước 2: Tính đạo hàm cấp một
y' = 3x2 - 6x
Bước 3: Tìm điểm tới hạn
Giải phương trình y' = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2 là các điểm tới hạn.
Bước 4: Khảo sát dấu của đạo hàm
Lập bảng xét dấu y' = 3x(x - 2):
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
3x | - | + | + | + |
x-2 | - | - | + | + |
y' | + | - | + | + |
y | Đồng biến | Nghịch biến | Đồng biến | Đồng biến |
Bước 5: Tìm cực trị
Dựa vào bảng xét dấu, ta thấy:
Bước 6: Kết luận
Hàm số y = x3 - 3x2 + 2 đạt cực đại tại x = 0, với giá trị là 2 và đạt cực tiểu tại x = 2, với giá trị là -2.
Để hiểu sâu hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế, các em có thể tham khảo thêm các bài tập tương tự trong SGK Toán 12 tập 1 và các tài liệu ôn thi THPT Quốc gia. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Ngoài ra, các em có thể tìm hiểu thêm về các ứng dụng khác của đạo hàm, như việc tìm khoảng đơn điệu, khoảng lồi lõm của hàm số, và giải các bài toán tối ưu hóa.