Logo Header
  1. Môn Toán
  2. Giải bài tập 2.10 trang 65 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 2.10 trang 65 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 2.10 trang 65 SGK Toán 12 tập 1

Chào mừng các em học sinh đến với bài giải bài tập 2.10 trang 65 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12 tập 1, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Cho tứ diện ABCD có \(AB = 2a,CD = 2a\sqrt 3 \). Gọi M, N lần lượt là trung điểm của BC và AD. Biết rằng \(MN = a\sqrt 7 \), hãy tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).

Đề bài

Cho tứ diện ABCD có \(AB = 2a,CD = 2a\sqrt 3 \). Gọi M, N lần lượt là trung điểm của BC và AD. Biết rằng \(MN = a\sqrt 7 \), hãy tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).

Phương pháp giải - Xem chi tiếtGiải bài tập 2.10 trang 65 SGK Toán 12 tập 1 - Cùng khám phá 1

- Sử dụng công thức trung điểm để biểu diễn các vectơ \(\overrightarrow {NM} \) qua các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).

- Tính tích vô hướng \(\overrightarrow {MN} \cdot \overrightarrow {MN} \) để từ đó tìm ra tích vô hướng \(\overrightarrow {AB} \cdot \overrightarrow {CD} \).

- Sử dụng công thức tích vô hướng để tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).

Lời giải chi tiết

Giải bài tập 2.10 trang 65 SGK Toán 12 tập 1 - Cùng khám phá 2

- Vì \(M\) là trung điểm của BC, nên \(\overrightarrow {BM} = \frac{1}{2}\overrightarrow {BC} \).

- Vì \(N\) là trung điểm của AD, nên \(\overrightarrow {AN} = \frac{1}{2}\overrightarrow {AD} \).

- Vectơ \(\overrightarrow {NM} \) có thể được viết là:

\(\overrightarrow {NM} = \overrightarrow {NB} + \overrightarrow {BM} \)

Với: \(\overrightarrow {NB} = \overrightarrow {NA} + \overrightarrow {AB} = \frac{1}{2}\overrightarrow {DA} + \overrightarrow {AB} \)

Và: \(\overrightarrow {BM} = \frac{1}{2}\overrightarrow {BC} = \frac{1}{2}\left( {\overrightarrow {BD} - \overrightarrow {CD} } \right)\).

Suy ra:

\(\overrightarrow {NM} = \frac{1}{2}\left( {\overrightarrow {DA} + \overrightarrow {BD} } \right) + \overrightarrow {AB} - \frac{1}{2}\overrightarrow {CD} = \frac{1}{2}\overrightarrow {BA} + \overrightarrow {AB} - \frac{1}{2}\overrightarrow {CD} = \frac{1}{2}(\overrightarrow {AB} - \overrightarrow {CD} )\)

Ta có: \(\overrightarrow {NM} \cdot \overrightarrow {NM} = \frac{1}{4}(\overrightarrow {AB} - \overrightarrow {CD} ) \cdot (\overrightarrow {AB} - \overrightarrow {CD} )\)

Biểu thức này mở rộng thành:

\(\frac{1}{4}(\overrightarrow {AB} \cdot \overrightarrow {AB} - 2\overrightarrow {AB} \cdot \overrightarrow {CD} + \overrightarrow {CD} \cdot \overrightarrow {CD} )\)

Biết rằng \(\overrightarrow {NM} \cdot \overrightarrow {NM} = M{N^2} = 7{a^2}\), \(AB = 2a\), \(CD = 2a\sqrt 3 \), ta suy ra:

\(7{a^2} = \frac{1}{4}(4{a^2} - 2\overrightarrow {AB} \cdot \overrightarrow {CD} + 12{a^2})\)

\(7{a^2} = \frac{1}{4}(16{a^2} - 2\overrightarrow {AB} \cdot \overrightarrow {CD} )\)

\(28{a^2} = 16{a^2} - 2\overrightarrow {AB} \cdot \overrightarrow {CD} \)

\(\overrightarrow {AB} \cdot \overrightarrow {CD} = - 6{a^2}\)

- Góc giữa hai vectơ được tính bởi:

\(\cos \theta = \frac{{\overrightarrow {AB} \cdot \overrightarrow {CD} }}{{|\overrightarrow {AB} | \cdot |\overrightarrow {CD} |}}\)

\(\cos \theta = \frac{{ - 6{a^2}}}{{2a.2a\sqrt 3 }} = - \frac{{\sqrt 3 }}{2}\)

Suy ra góc giữa \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) là \(\theta = {150^\circ }\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2.10 trang 65 SGK Toán 12 tập 1 - Cùng khám phá đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2.10 trang 65 SGK Toán 12 tập 1: Phân tích chi tiết và hướng dẫn giải

Bài tập 2.10 trang 65 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Tính f'(x) để tìm các điểm dừng (điểm mà f'(x) = 0 hoặc không xác định).
  3. Lập bảng biến thiên: Xác định dấu của f'(x) trên các khoảng xác định để xác định khoảng đồng biến, nghịch biến của hàm số.
  4. Tìm cực trị: Sử dụng dấu của f'(x) để xác định các điểm cực đại, cực tiểu của hàm số.
  5. Khảo sát giới hạn: Tính giới hạn của hàm số khi x tiến tới vô cùng và các điểm gián đoạn.
  6. Vẽ đồ thị hàm số: Dựa trên các thông tin thu được, vẽ đồ thị hàm số.

Lời giải chi tiết bài tập 2.10 trang 65 SGK Toán 12 tập 1

Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2.

Bước 1: Tập xác định

Hàm số f(x) = x3 - 3x2 + 2 là một đa thức, do đó tập xác định của hàm số là D = ℝ.

Bước 2: Đạo hàm bậc nhất

f'(x) = 3x2 - 6x.

Bước 3: Tìm điểm dừng

Giải phương trình f'(x) = 0, ta được:

3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2.

Vậy, hàm số có hai điểm dừng là x = 0 và x = 2.

Bước 4: Lập bảng biến thiên

x-∞02+∞
f'(x)+-+
f(x)

Bước 5: Tìm cực trị

Dựa vào bảng biến thiên, ta thấy:

  • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
  • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Bước 6: Khảo sát giới hạn

limx→-∞ f(x) = -∞ và limx→+∞ f(x) = +∞.

Bước 7: Vẽ đồ thị hàm số

Dựa trên các thông tin đã thu được, ta có thể vẽ đồ thị hàm số f(x) = x3 - 3x2 + 2.

Mở rộng và các bài tập tương tự

Các em có thể áp dụng các bước trên để giải các bài tập tương tự khác. Điều quan trọng là phải nắm vững các khái niệm về đạo hàm, điểm cực trị và bảng biến thiên. Ngoài ra, các em cũng nên luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 12