Chào mừng các em học sinh đến với bài giải chi tiết bài tập 5.47 trang 86 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Cho ba điểm A(3; 0; 1), B(0; 2; 1), C(1; 0; 0). Phương trình của mặt phẳng (ABC) là A. \(2x - 3y - 4z + 2 = 0\) B. \(2x + 3y - 4z - 2 = 0\) C. \(4x + 6y - 8z + 2 = 0\) D. \(2x - 3y - 4z + 1 = 0\)
Đề bài
Cho ba điểm A(3; 0; 1), B(0; 2; 1), C(1; 0; 0). Phương trình của mặt phẳng (ABC) là
A. \(2x - 3y - 4z + 2 = 0\)
B. \(2x + 3y - 4z - 2 = 0\)
C. \(4x + 6y - 8z + 2 = 0\)
D. \(2x - 3y - 4z + 1 = 0\)
Phương pháp giải - Xem chi tiết
1. Tính hai vectơ chỉ phương của mặt phẳng:
- Véc-tơ \(\overrightarrow {AB} = ({x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1})\)
- Véc-tơ \(\overrightarrow {AC} = ({x_3} - {x_1},{y_3} - {y_1},{z_3} - {z_1})\)
2. Tính vectơ pháp tuyến của mặt phẳng:
- Vectơ pháp tuyến của mặt phẳng sẽ là tích có hướng của hai vectơ chỉ phương \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
3. Viết phương trình mặt phẳng:
- Phương trình mặt phẳng có dạng:
\({n_1}(x - {x_1}) + {n_2}(y - {y_1}) + {n_3}(z - {z_1}) = 0\)
- Thay tọa độ điểm \(A({x_1},{y_1},{z_1})\) vào phương trình trên để ra phương trình mặt phẳng.
Lời giải chi tiết
* Tính hai vectơ chỉ phương:
Véc-tơ \(\overrightarrow {AB} = (0 - 3;2 - 0;1 - 1) = ( - 3;2;0)\)
Véc-tơ \(\overrightarrow {AC} = (1 - 3;0 - 0;0 - 1) = ( - 2;0; - 1)\)
* Tính vectơ pháp tuyến:
- Tính tích có hướng
\(\vec n = \overrightarrow {AB} \times \overrightarrow {AC} = (2.( - 1) - 0.0;0.( - 2) - ( - 3).( - 1);( - 3).0 - 2.( - 2)) = ( - 2; - 3;4)\)
- Vậy, vectơ pháp tuyến \(\vec n = ( - 2; - 3;4)\).
* Viết phương trình mặt phẳng:
- Phương trình mặt phẳng có dạng:
\( - 2(x - 3) - 3(y - 0) + 4(z - 1) = 0\)
\( - 2x + 6 - 3y + 4z - 4 = 0\)
\( - 2x - 3y + 4z + 2 = 0\)
\(2x + 3y - 4z - 2 = 0\)
* Phương trình của mặt phẳng \((ABC)\) là:
\(2x + 3y - 4z - 2 = 0\)
Chọn B
Bài tập 5.47 trang 86 SGK Toán 12 tập 2 là một bài toán điển hình trong chương trình học về đạo hàm của hàm số. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Bài toán 5.47 thường yêu cầu chúng ta:
Để minh họa, giả sử bài toán 5.47 có nội dung như sau:
Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
y' = 3x2 - 6x
3x2 - 6x = 0
3x(x - 2) = 0
=> x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | ↗ | ↘ | ↗ |
Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.
Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.
Ngoài bài tập 5.47, còn rất nhiều bài tập tương tự về đạo hàm trong SGK Toán 12 tập 2. Để giải quyết các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Để củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập, các em nên luyện tập thêm các bài tập khác trong SGK và các tài liệu tham khảo. Ngoài ra, các em có thể tham gia các khóa học online hoặc tìm kiếm sự giúp đỡ từ các thầy cô giáo.
Bài tập 5.47 trang 86 SGK Toán 12 tập 2 là một bài toán quan trọng giúp các em hiểu rõ hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và các phương pháp giải đã trình bày, các em sẽ tự tin hơn trong việc học tập và làm bài tập Toán 12.