Chào mừng các em học sinh đến với bài giải bài tập 4.37 trang 37 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Cho hàm số \(f(x)\) liên tục trên đoạn \([1;2]\) và \(\int_1^2 {\left[ {4f(x) - 2x} \right]} dx = 1\). Khi đó \(\int_1^2 f (x)dx\) bằng: A. \( - 1\) B. \( - 3\) C. \(3\) D. \(1\)
Đề bài
Cho hàm số \(f(x)\) liên tục trên đoạn \([1;2]\) và \(\int_1^2 {\left[ {4f(x) - 2x} \right]} dx = 1\). Khi đó \(\int_1^2 f (x)dx\) bằng:
A. \( - 1\)
B. \( - 3\)
C. \(3\)
D. \(1\)
Phương pháp giải - Xem chi tiết
- Sử dụng phương trình cho trước để tìm mối quan hệ giữa \(\int_1^2 f (x){\mkern 1mu} dx\) và tích phân của \(2x\).
- Tính giá trị tích phân của \(2x\) và từ đó tìm \(\int_1^2 f (x){\mkern 1mu} dx\).
Lời giải chi tiết
Sử dụng phương trình đã cho:
\(\int_1^2 {\left( {4f(x) - 2x} \right)} dx = 1\)
Tách thành hai tích phân:
\(4\int_1^2 f (x){\mkern 1mu} dx - \int_1^2 2 x{\mkern 1mu} dx = 1\)
\(\int_1^2 2 x{\mkern 1mu} dx = \left[ {{x^2}} \right]_1^2 = {2^2} - {1^2} = 4 - 1 = 3\)
Thay vào phương trình ban đầu:
\(4\int_1^2 f (x){\mkern 1mu} dx - 3 = 1\)
\(4\int_1^2 f (x){\mkern 1mu} dx = 4\)
\(\int_1^2 f (x){\mkern 1mu} dx = 1\)
Chọn D.
Bài tập 4.37 trang 37 SGK Toán 12 tập 2 thường liên quan đến việc ứng dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế, chẳng hạn như tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, hoặc xác định điều kiện để phương trình có nghiệm. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Giả sử bài tập 4.37 yêu cầu tìm giá trị lớn nhất của hàm số f(x) = -x2 + 4x + 1 trên đoạn [0; 3]. Chúng ta sẽ thực hiện các bước sau:
Ngoài bài tập 4.37, SGK Toán 12 tập 2 còn nhiều bài tập tương tự yêu cầu vận dụng kiến thức về đạo hàm để giải quyết các bài toán tối ưu hóa. Một số dạng bài tập thường gặp bao gồm:
Khi giải các bài tập về đạo hàm, cần lưu ý một số điểm sau:
Bài tập 4.37 trang 37 SGK Toán 12 tập 2 là một bài tập điển hình để rèn luyện kỹ năng vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bằng cách nắm vững các bước giải và lưu ý các điểm quan trọng, các em có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán 12.