Chào mừng các em học sinh đến với bài giải chi tiết mục 3 trang 18, 19 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Chúng tôi cung cấp lời giải đầy đủ, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập Toán 12.
Mục tiêu của chúng tôi là hỗ trợ các em học tập hiệu quả, đồng thời cung cấp một nền tảng học toán online tiện lợi và đáng tin cậy.
Tính a) \(\int_1^9 {\frac{{2\sqrt x - {x^2}}}{{{x^3}}}} dx\); b) \(\int_{ - 1}^1 {{e^{x + 2}}} dx\); c) \(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {3 + 2{{\cot }^2}x} \right)} dx\).
Trả lời câu hỏi Luyện tập 6 trang 18 SGK Toán 12 Cùng khám phá
Tính
a) \(\int_1^9 {\frac{{2\sqrt x - {x^2}}}{{{x^3}}}} dx\);
b) \(\int_{ - 1}^1 {{e^{x + 2}}} dx\);
c) \(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {3 + 2{{\cot }^2}x} \right)} dx\).
Phương pháp giải:
a) Phân tách biểu thức trong tích phân thành các phần tử đơn giản hơn rồi sử dụng các công thức cơ bản để tính tích phân.
b) Đối với tích phân này, ta có thể khai triển biểu thức \({e^{x + 2}}\) thành \({e^x}.{e^2}\) sau đó sử dụng các công thức cơ bản để tính tích phân
c) Đối với tích phân của hàm chứa hàm lượng giác, đặc biệt là hàm \({\cot ^2}x\), sử dụng công thức lượng giác liên quan để đơn giản hóa và tính tích phân.
Lời giải chi tiết:
a)
\(\int_1^9 {\frac{{2\sqrt x - {x^2}}}{{{x^3}}}} dx = \int_1^9 {\left( {\frac{{2\sqrt x }}{{{x^3}}} - \frac{{{x^2}}}{{{x^3}}}} \right)} dx = \int_1^9 {\left( {\frac{2}{{{x^{5/2}}}} - \frac{1}{x}} \right)} dx\)
Tính từng phần:
\(\int_1^9 {\frac{2}{{{x^{5/2}}}}} dx = \left. { - \frac{4}{{3{x^{3/2}}}}} \right|_1^9 = - \frac{4}{{{{3.9}^{3/2}}}} + \frac{4}{{{{3.1}^{3/2}}}} = - \frac{4}{{81}} + \frac{4}{3} = \frac{{108 - 4}}{{81}} = \frac{{104}}{{81}}\)
\(\int_1^9 {\frac{1}{x}} dx = \left. {\ln x} \right|_1^9 = \ln 9 - \ln 1 = \ln 9\)
Vậy:
\(\int_1^9 {\frac{{2\sqrt x - {x^2}}}{{{x^3}}}} dx = \frac{{104}}{{81}} - \ln 9\)
b)
Ta có:
\(I = \int_{ - 1}^1 {{e^{x + 2}}} {\mkern 1mu} dx = \int_{ - 1}^1 {{e^x}} \cdot {e^2}{\mkern 1mu} dx = {e^2}\int_{ - 1}^1 {{e^x}} {\mkern 1mu} dx = {e^2}\left( {\left. {{e^x}} \right|_{ - 1}^1} \right) = {e^2}\left( {{e^1} - {e^{ - 1}}} \right)\)
Mà:
\(I = {e^2}\left( {e - \frac{1}{e}} \right) = {e^2}\left( {\frac{{{e^2} - 1}}{e}} \right)\)
Vậy:
\(I = \frac{{{e^4} - {e^2}}}{e}\)
c)
\(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {3 + 2{{\cot }^2}x} \right)} dx = \int_{\frac{\pi }{4}}^{\frac{\pi }{2}} 3 {\mkern 1mu} dx + 2\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\cot }^2}} x{\mkern 1mu} dx\)
Tính phần đầu:
\(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} 3 {\mkern 1mu} dx = 3\left. x \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} = 3\left( {\frac{\pi }{2} - \frac{\pi }{4}} \right) = 3 \cdot \frac{\pi }{4} = \frac{{3\pi }}{4}\)
Đối với phần chứa \({\cot ^2}x\):
\(\int {{{\cot }^2}} x{\mkern 1mu} dx = \int {\left( {\frac{1}{{{{\sin }^2}x}} - 1} \right)} {\mkern 1mu} dx = - \cot x - x\)
Vậy:
\(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\cot }^2}} x{\mkern 1mu} dx = \left. {\left( { - \frac{{\cos x}}{{\sin x}} - x} \right)} \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} = \left( { - 0 - \frac{\pi }{2}} \right) - \left( { - 1 - \frac{\pi }{4}} \right) = - \frac{\pi }{4} + 1\)
Vậy tích phân cần tìm là:
\(\frac{{3\pi }}{4} + 2\left( { - \frac{\pi }{4} + 1} \right) = \frac{{3\pi }}{4} - \frac{\pi }{2} + 2 = \frac{\pi }{4} + 2\)
Trả lời câu hỏi Luyện tập 7 trang 19 SGK Toán 12 Cùng khám phá
Tính
a) \(\int_0^\pi {\left| {\cos x} \right|dx} \);
b) \(\int_{ - 3}^2 {\left| {1 - {x^2}} \right|dx} \).
Phương pháp giải:
Để tính các tích phân có dấu giá trị tuyệt đối, phương pháp tổng quát là:
- Xác định điểm mà hàm số bên trong giá trị tuyệt đối đổi dấu, tức là tìm những điểm mà hàm số bên trong giá trị tuyệt đối bằng 0.
- Chia khoảng tích phân thành các đoạn con, sao cho trên mỗi đoạn, giá trị tuyệt đối có thể được bỏ đi (bằng cách thay thế bằng chính hàm số hoặc lấy ngược dấu hàm số).
- Tính tích phân trên từng đoạn, với biểu thức đã bỏ giá trị tuyệt đối, sau đó cộng các tích phân này lại.
Lời giải chi tiết:
a)
Tìm điểm đổi dấu của hàm số:
\(\cos x = 0{\rm{ khi }}x = \frac{\pi }{2}.\)
Trên đoạn \([0,\frac{\pi }{2}]\), \(\cos x > 0\), và trên đoạn \([\frac{\pi }{2},\pi ]\), \(\cos x < 0\).
Chia khoảng tích phân:
\(\int_0^\pi {\left| {\cos x} \right|dx} = \int_0^{\frac{\pi }{2}} {\cos xdx} + \int_{\frac{\pi }{2}}^\pi { - \cos xdx} .\)
Tính từng tích phân:
\({I_1} = \int_0^{\frac{\pi }{2}} {\cos xdx} = \sin x|_0^{^{\frac{\pi }{2}}} = \sin \frac{\pi }{2} - \sin 0 = 1 - 0 = 1,\)
\({I_2} = \int_{\frac{\pi }{2}}^\pi { - \cos xdx} = - \sin x|_{\frac{\pi }{2}}^\pi = - (\sin \pi - \sin \frac{\pi }{2}) = - (0 - 1) = 1.\)
Kết luận:
\(\int_0^\pi {\left| {\cos x} \right|dx} = {I_1} + {I_2} = 1 + 1 = 2.\)
b)
Tìm điểm đổi dấu của hàm số:
\(1 - {x^2} = 0{\rm{ khi }}x = \pm 1.\)
Hàm số \(1 - {x^2}\) dương khi \(x \in ( - 1,1)\) và âm khi \(x \in ( - 3, - 1]\) và \(x \in [1,2]\).
Chia khoảng tích phân:
\(\int_{ - 3}^2 {\left| {1 - {x^2}} \right|} dx = \int_{ - 3}^{ - 1} {({x^2} - 1)} dx + \int_{ - 1}^1 {(1 - {x^2})} dx + \int_1^2 {({x^2} - 1)} dx.\)
Tích phân trên đoạn \([ - 3, - 1]\):
\({I_1} = \int_{ - 3}^{ - 1} {({x^2} - 1)} dx = \left( {\frac{{{x^3}}}{3} - x} \right)|_{ - 3}^{ - 1} = \left( {\frac{{{{( - 1)}^3}}}{3} - ( - 1)} \right) - \left( {\frac{{{{( - 3)}^3}}}{3} - ( - 3)} \right)\)
\( = \left( { - \frac{1}{3} + 1} \right) - \left( { - 9 + 3} \right) = \frac{2}{3} - ( - 6) = \frac{2}{3} + 6 = \frac{{20}}{3}.\)
Tích phân trên đoạn \([ - 1,1]\):
\({I_2} = \int_{ - 1}^1 {(1 - {x^2})} ,dx = \left( {x - \frac{{{x^3}}}{3}} \right)|_{ - 1}^1 = \left( {1 - \frac{1}{3}} \right) - \left( { - 1 + \frac{1}{3}} \right)\)
\( = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}.\)
Tích phân trên đoạn \(\left[ {1;2} \right]\):
\({I_3} = \int_1^2 {({x^2} - 1)} ,dx = \left( {\frac{{{x^3}}}{3} - x} \right)|_1^2 = \left( {\frac{{{2^3}}}{3} - 2} \right) - \left( {\frac{{{1^3}}}{3} - 1} \right)\)
\( = \left( {\frac{8}{3} - 2} \right) - \left( {\frac{1}{3} - 1} \right) = \left( {\frac{8}{3} - \frac{6}{3}} \right) - \left( {\frac{1}{3} - \frac{3}{3}} \right)\)
\( = \frac{2}{3} - ( - \frac{2}{3}) = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}.\)
Kết luận:
\(\int_{ - 3}^2 {\left| {1 - {x^2}} \right|} dx = {I_1} + {I_2} + {I_3} = \frac{{20}}{3} + \frac{4}{3} + \frac{4}{3} = \frac{{28}}{3}.\)
Trả lời câu hỏi Luyện tập 6 trang 18 SGK Toán 12 Cùng khám phá
Tính
a) \(\int_1^9 {\frac{{2\sqrt x - {x^2}}}{{{x^3}}}} dx\);
b) \(\int_{ - 1}^1 {{e^{x + 2}}} dx\);
c) \(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {3 + 2{{\cot }^2}x} \right)} dx\).
Phương pháp giải:
a) Phân tách biểu thức trong tích phân thành các phần tử đơn giản hơn rồi sử dụng các công thức cơ bản để tính tích phân.
b) Đối với tích phân này, ta có thể khai triển biểu thức \({e^{x + 2}}\) thành \({e^x}.{e^2}\) sau đó sử dụng các công thức cơ bản để tính tích phân
c) Đối với tích phân của hàm chứa hàm lượng giác, đặc biệt là hàm \({\cot ^2}x\), sử dụng công thức lượng giác liên quan để đơn giản hóa và tính tích phân.
Lời giải chi tiết:
a)
\(\int_1^9 {\frac{{2\sqrt x - {x^2}}}{{{x^3}}}} dx = \int_1^9 {\left( {\frac{{2\sqrt x }}{{{x^3}}} - \frac{{{x^2}}}{{{x^3}}}} \right)} dx = \int_1^9 {\left( {\frac{2}{{{x^{5/2}}}} - \frac{1}{x}} \right)} dx\)
Tính từng phần:
\(\int_1^9 {\frac{2}{{{x^{5/2}}}}} dx = \left. { - \frac{4}{{3{x^{3/2}}}}} \right|_1^9 = - \frac{4}{{{{3.9}^{3/2}}}} + \frac{4}{{{{3.1}^{3/2}}}} = - \frac{4}{{81}} + \frac{4}{3} = \frac{{108 - 4}}{{81}} = \frac{{104}}{{81}}\)
\(\int_1^9 {\frac{1}{x}} dx = \left. {\ln x} \right|_1^9 = \ln 9 - \ln 1 = \ln 9\)
Vậy:
\(\int_1^9 {\frac{{2\sqrt x - {x^2}}}{{{x^3}}}} dx = \frac{{104}}{{81}} - \ln 9\)
b)
Ta có:
\(I = \int_{ - 1}^1 {{e^{x + 2}}} {\mkern 1mu} dx = \int_{ - 1}^1 {{e^x}} \cdot {e^2}{\mkern 1mu} dx = {e^2}\int_{ - 1}^1 {{e^x}} {\mkern 1mu} dx = {e^2}\left( {\left. {{e^x}} \right|_{ - 1}^1} \right) = {e^2}\left( {{e^1} - {e^{ - 1}}} \right)\)
Mà:
\(I = {e^2}\left( {e - \frac{1}{e}} \right) = {e^2}\left( {\frac{{{e^2} - 1}}{e}} \right)\)
Vậy:
\(I = \frac{{{e^4} - {e^2}}}{e}\)
c)
\(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {3 + 2{{\cot }^2}x} \right)} dx = \int_{\frac{\pi }{4}}^{\frac{\pi }{2}} 3 {\mkern 1mu} dx + 2\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\cot }^2}} x{\mkern 1mu} dx\)
Tính phần đầu:
\(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} 3 {\mkern 1mu} dx = 3\left. x \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} = 3\left( {\frac{\pi }{2} - \frac{\pi }{4}} \right) = 3 \cdot \frac{\pi }{4} = \frac{{3\pi }}{4}\)
Đối với phần chứa \({\cot ^2}x\):
\(\int {{{\cot }^2}} x{\mkern 1mu} dx = \int {\left( {\frac{1}{{{{\sin }^2}x}} - 1} \right)} {\mkern 1mu} dx = - \cot x - x\)
Vậy:
\(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\cot }^2}} x{\mkern 1mu} dx = \left. {\left( { - \frac{{\cos x}}{{\sin x}} - x} \right)} \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} = \left( { - 0 - \frac{\pi }{2}} \right) - \left( { - 1 - \frac{\pi }{4}} \right) = - \frac{\pi }{4} + 1\)
Vậy tích phân cần tìm là:
\(\frac{{3\pi }}{4} + 2\left( { - \frac{\pi }{4} + 1} \right) = \frac{{3\pi }}{4} - \frac{\pi }{2} + 2 = \frac{\pi }{4} + 2\)
Trả lời câu hỏi Luyện tập 7 trang 19 SGK Toán 12 Cùng khám phá
Tính
a) \(\int_0^\pi {\left| {\cos x} \right|dx} \);
b) \(\int_{ - 3}^2 {\left| {1 - {x^2}} \right|dx} \).
Phương pháp giải:
Để tính các tích phân có dấu giá trị tuyệt đối, phương pháp tổng quát là:
- Xác định điểm mà hàm số bên trong giá trị tuyệt đối đổi dấu, tức là tìm những điểm mà hàm số bên trong giá trị tuyệt đối bằng 0.
- Chia khoảng tích phân thành các đoạn con, sao cho trên mỗi đoạn, giá trị tuyệt đối có thể được bỏ đi (bằng cách thay thế bằng chính hàm số hoặc lấy ngược dấu hàm số).
- Tính tích phân trên từng đoạn, với biểu thức đã bỏ giá trị tuyệt đối, sau đó cộng các tích phân này lại.
Lời giải chi tiết:
a)
Tìm điểm đổi dấu của hàm số:
\(\cos x = 0{\rm{ khi }}x = \frac{\pi }{2}.\)
Trên đoạn \([0,\frac{\pi }{2}]\), \(\cos x > 0\), và trên đoạn \([\frac{\pi }{2},\pi ]\), \(\cos x < 0\).
Chia khoảng tích phân:
\(\int_0^\pi {\left| {\cos x} \right|dx} = \int_0^{\frac{\pi }{2}} {\cos xdx} + \int_{\frac{\pi }{2}}^\pi { - \cos xdx} .\)
Tính từng tích phân:
\({I_1} = \int_0^{\frac{\pi }{2}} {\cos xdx} = \sin x|_0^{^{\frac{\pi }{2}}} = \sin \frac{\pi }{2} - \sin 0 = 1 - 0 = 1,\)
\({I_2} = \int_{\frac{\pi }{2}}^\pi { - \cos xdx} = - \sin x|_{\frac{\pi }{2}}^\pi = - (\sin \pi - \sin \frac{\pi }{2}) = - (0 - 1) = 1.\)
Kết luận:
\(\int_0^\pi {\left| {\cos x} \right|dx} = {I_1} + {I_2} = 1 + 1 = 2.\)
b)
Tìm điểm đổi dấu của hàm số:
\(1 - {x^2} = 0{\rm{ khi }}x = \pm 1.\)
Hàm số \(1 - {x^2}\) dương khi \(x \in ( - 1,1)\) và âm khi \(x \in ( - 3, - 1]\) và \(x \in [1,2]\).
Chia khoảng tích phân:
\(\int_{ - 3}^2 {\left| {1 - {x^2}} \right|} dx = \int_{ - 3}^{ - 1} {({x^2} - 1)} dx + \int_{ - 1}^1 {(1 - {x^2})} dx + \int_1^2 {({x^2} - 1)} dx.\)
Tích phân trên đoạn \([ - 3, - 1]\):
\({I_1} = \int_{ - 3}^{ - 1} {({x^2} - 1)} dx = \left( {\frac{{{x^3}}}{3} - x} \right)|_{ - 3}^{ - 1} = \left( {\frac{{{{( - 1)}^3}}}{3} - ( - 1)} \right) - \left( {\frac{{{{( - 3)}^3}}}{3} - ( - 3)} \right)\)
\( = \left( { - \frac{1}{3} + 1} \right) - \left( { - 9 + 3} \right) = \frac{2}{3} - ( - 6) = \frac{2}{3} + 6 = \frac{{20}}{3}.\)
Tích phân trên đoạn \([ - 1,1]\):
\({I_2} = \int_{ - 1}^1 {(1 - {x^2})} ,dx = \left( {x - \frac{{{x^3}}}{3}} \right)|_{ - 1}^1 = \left( {1 - \frac{1}{3}} \right) - \left( { - 1 + \frac{1}{3}} \right)\)
\( = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}.\)
Tích phân trên đoạn \(\left[ {1;2} \right]\):
\({I_3} = \int_1^2 {({x^2} - 1)} ,dx = \left( {\frac{{{x^3}}}{3} - x} \right)|_1^2 = \left( {\frac{{{2^3}}}{3} - 2} \right) - \left( {\frac{{{1^3}}}{3} - 1} \right)\)
\( = \left( {\frac{8}{3} - 2} \right) - \left( {\frac{1}{3} - 1} \right) = \left( {\frac{8}{3} - \frac{6}{3}} \right) - \left( {\frac{1}{3} - \frac{3}{3}} \right)\)
\( = \frac{2}{3} - ( - \frac{2}{3}) = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}.\)
Kết luận:
\(\int_{ - 3}^2 {\left| {1 - {x^2}} \right|} dx = {I_1} + {I_2} + {I_3} = \frac{{20}}{3} + \frac{4}{3} + \frac{4}{3} = \frac{{28}}{3}.\)
Mục 3 trong SGK Toán 12 tập 2 thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này, học sinh cần nắm vững kiến thức lý thuyết liên quan, bao gồm định nghĩa, tính chất, định lý và các công thức quan trọng. Việc hiểu rõ bản chất của vấn đề là yếu tố then chốt để tìm ra phương pháp giải phù hợp.
Tùy thuộc vào chương trình học, mục 3 trang 18, 19 có thể bao gồm các nội dung sau:
Để giải bài tập mục 3 trang 18, 19 SGK Toán 12 tập 2 một cách hiệu quả, học sinh có thể áp dụng các phương pháp sau:
Ví dụ 1: Tính đạo hàm của hàm số y = x3 - 2x2 + 5x - 1.
Lời giải:
y' = 3x2 - 4x + 5
Ví dụ 2: Tính tích phân xác định ∫01 x2 dx.
Lời giải:
∫01 x2 dx = [x3/3]01 = 1/3
Trong quá trình giải bài tập, học sinh cần lưu ý những điều sau:
Giaitoan.edu.vn là một nền tảng học toán online uy tín, cung cấp:
Hy vọng với những hướng dẫn và ví dụ minh họa trên, các em học sinh sẽ tự tin giải quyết các bài tập mục 3 trang 18, 19 SGK Toán 12 tập 2. Chúc các em học tập tốt và đạt kết quả cao!