Chào mừng các em học sinh đến với bài giải chi tiết bài tập 5.48 trang 86 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Cho điểm M(3; −1; −2) và mặt phẳng \((\alpha )\): 3x − y + 2z + 4 = 0. Mặt phẳng đi qua M và song song với \((\alpha )\)có phương trình là A. \(3x + y - 2z - 14 = 0\) B. \(3x - y + 2z + 6 = 0\) C. \(3x - y + 2z - 6 = 0\) D. \(3x - y - 2z + 6 = 0\)
Đề bài
Cho điểm M(3; −1; −2) và mặt phẳng \((\alpha )\): 3x − y + 2z + 4 = 0. Mặt phẳng đi qua M và song song với \((\alpha )\)có phương trình là
A. \(3x + y - 2z - 14 = 0\)
B. \(3x - y + 2z + 6 = 0\)
C. \(3x - y + 2z - 6 = 0\)
D. \(3x - y - 2z + 6 = 0\)
Phương pháp giải - Xem chi tiết
- Mặt phẳng song song với mặt phẳng \(\alpha \) phải có cùng vectơ pháp tuyến.
- Phương trình mặt phẳng có dạng:
\({n_1}(x - {x_1}) + {n_2}(y - {y_1}) + {n_3}(z - {z_1}) = 0\)
Lời giải chi tiết
Phương trình mặt phẳng đi qua điểm \(M(3; - 1; - 2)\) và song song với mặt phẳng \(\alpha :3x - y + 2z + 4 = 0\) có cùng vectơ pháp tuyến \(\vec n = (3, - 1,2)\).
Ta thay tọa độ điểm \(M(3, - 1, - 2)\) vào phương trình sau:
\(3(x - 3) - (y + 1) + 2(z + 2) = 0\)
\(3x - 9 - y - 1 + 2z + 4 = 0\)
\(3x - y + 2z - 6 = 0\)
Do đó, phương trình mặt phẳng cần tìm là:
\(3x - y + 2z - 6 = 0\)
Chọn C
Bài tập 5.48 trang 86 SGK Toán 12 tập 2 yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để tìm cực trị và khảo sát hàm số. Đây là một dạng bài tập quan trọng, thường xuyên xuất hiện trong các kỳ thi THPT Quốc gia. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Để giải bài tập 5.48 trang 86 SGK Toán 12 tập 2, chúng ta thực hiện các bước sau:
Ví dụ, giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2. Ta thực hiện các bước sau:
Đạo hàm là một công cụ mạnh mẽ trong giải toán, đặc biệt là trong các bài toán liên quan đến tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Ngoài ra, đạo hàm còn được ứng dụng rộng rãi trong các lĩnh vực khác như vật lý, kinh tế, kỹ thuật,...
Để nắm vững kiến thức về đạo hàm và ứng dụng, các em nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Giaitoan.edu.vn cung cấp đầy đủ các bài giải chi tiết và hướng dẫn giải các bài tập Toán 12, giúp các em học tập hiệu quả hơn.
Bài tập 5.48 trang 86 SGK Toán 12 tập 2 là một bài tập quan trọng, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các em sẽ tự tin hơn khi giải các bài tập tương tự.
Bài tập | Trang | Chương |
---|---|---|
Bài tập 5.48 | 86 | Đạo hàm và ứng dụng |