Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8 sách Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 12 trang 27, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán.
Thu gọn các biểu sau: a) \(\left( {a - 4} \right)\left( {a + 4} \right) + {\left( {2a - 1} \right)^2}\);
Đề bài
Thu gọn các biểu sau:
a) \(\left( {a - 4} \right)\left( {a + 4} \right) + {\left( {2a - 1} \right)^2}\);
b) \({\left( {3a - b} \right)^2} - \left( {a - 2b} \right)\left( {2b - a} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về hằng đẳng thức để tính: \(\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\), \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)
Lời giải chi tiết
a) \(\left( {a - 4} \right)\left( {a + 4} \right) + {\left( {2a - 1} \right)^2} = {a^2} - 16 + 4{a^2} - 4a + 1 = \left( {{a^2} + 4{a^2}} \right) - 4a + \left( {1 - 16} \right)\)
\( = 5{a^2} - 4a - 15\)
b) \({\left( {3a - b} \right)^2} - \left( {a - 2b} \right)\left( {2b - a} \right) = 9{a^2} - 6ab + {b^2} + {\left( {a - 2b} \right)^2}\) \( = 9{a^2} - 6ab + {b^2} + {a^2} - 4ab + 4{b^2}\)\( = \left( {9{a^2} + {a^2}} \right) - \left( {6ab + 4ab} \right) + \left( {4{b^2} + {b^2}} \right)\)
\( = 10{a^2} - 10ab + 5{b^2}\)
Bài 12 trang 27 sách bài tập Toán 8 Chân trời sáng tạo thuộc chương trình học về các hình khối trong không gian, cụ thể là hình lăng trụ đứng và hình chóp. Bài tập này yêu cầu học sinh vận dụng kiến thức về diện tích xung quanh, diện tích đáy và thể tích của các hình này để giải quyết các bài toán thực tế.
Bài 12 trang 27 thường bao gồm các dạng bài tập sau:
Để giải bài 12 trang 27 sách bài tập Toán 8 Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các công thức sau:
Ví dụ: Cho hình lăng trụ đứng có đáy là hình vuông cạnh 5cm và chiều cao 8cm. Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình lăng trụ.
Giải:
Để giải nhanh các bài tập về hình lăng trụ và hình chóp, bạn nên:
Để củng cố kiến thức và kỹ năng giải bài tập, bạn nên luyện tập thêm với các bài tập tương tự trong sách bài tập và các nguồn tài liệu khác. Bạn có thể tìm thấy thêm các bài giải chi tiết và hướng dẫn giải bài tập tại giaitoan.edu.vn.
Bài 12 trang 27 sách bài tập Toán 8 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng kiến thức về hình lăng trụ và hình chóp. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải bài tập này và đạt kết quả tốt trong môn Toán.