Chào mừng các em học sinh đến với lời giải chi tiết bài 9 trang 31 sách bài tập Toán 8 - Chân trời sáng tạo tập 2. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình ôn tập và làm bài tập Toán 8 một cách hiệu quả nhất.
Chúng tôi sẽ cung cấp đáp án, phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Giải các phương trình sau: a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\);
Đề bài
Giải các phương trình sau:
a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\);
b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\);
c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} - \frac{{1 - 2x}}{4}\);
d) \(\frac{x}{5} + \frac{{2x + 1}}{6} = \frac{{2\left( {x - 2} \right)}}{3}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức giải phương trình bậc nhất để tìm nghiệm: Để giải một phương trình, ta thường sử dụng các quy tắc biến đổi sau:
+ Chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó (Quy tắc chuyển vế);
+ Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
+ Chia cả hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
Áp dụng các quy tắc trên, phương trình \(ax + b = 0\) (với \(a \ne 0\)) được giải như sau:
\(ax + b = 0\)
\(ax = - b\)
\(x = \frac{{ - b}}{a}\)
Lời giải chi tiết
a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\)
\(\frac{{4\left( {9x + 5} \right)}}{{24}} = \frac{{24}}{{24}} - \frac{{3\left( {6 + 3x} \right)}}{{24}}\)
\(36x + 20 = 24 - 18 - 9x\)
\(36x + 9x = 24 - 18 - 20\)
\(45x = - 14\)
\(x = \frac{{ - 14}}{{45}}\)
Vậy phương trình đã cho có nghiệm là \(x = \frac{{ - 14}}{{45}}\)
b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\)
\(\frac{{5\left( {x + 1} \right)}}{{20}} = \frac{{10}}{{20}} + \frac{{4\left( {2x + 1} \right)}}{{20}}\)
\(5x + 5 = 10 + 8x + 4\)
\(5x - 8x = 14 - 5\)
\( - 3x = 9\)
\(x = - 3\)
Vậy phương trình đã cho có nghiệm là \(x = - 3\)
c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} - \frac{{1 - 2x}}{4}\)
\(\frac{{8\left( {x + 1} \right)}}{{12}} = \frac{{18}}{{12}} - \frac{{3\left( {1 - 2x} \right)}}{{12}}\)
\(8x + 8 = 18 - 3 + 6x\)
\(8x - 6x = 15 - 8\)
\(2x = 7\)
\(x = \frac{7}{2}\)
Vậy phương trình đã cho có nghiệm là \(x = \frac{7}{2}\)
d) \(\frac{x}{5} + \frac{{2x + 1}}{6} = \frac{{2\left( {x - 2} \right)}}{3}\)
\(\frac{{6x}}{{30}} + \frac{{5\left( {2x + 1} \right)}}{{30}} = \frac{{20\left( {x - 2} \right)}}{{30}}\)
\(6x + 10x + 5 = 20x - 40\)
\(16x - 20x = - 40 - 5\)
\( - 4x = - 45\)
\(x = \frac{{45}}{4}\)
Vậy phương trình đã cho có nghiệm là \(x = \frac{{45}}{4}\)
Bài 9 trang 31 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý và tính chất của các hình đặc biệt này, đồng thời rèn luyện kỹ năng chứng minh và tính toán.
Bài 9 trang 31 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 thường bao gồm các dạng bài tập sau:
Đề bài: Cho hình bình hành ABCD. Gọi E là trung điểm của cạnh AB. Gọi F là giao điểm của DE và AC. Chứng minh rằng: a) Tam giác ADE = Tam giác BCE. b) AF = FC.
Lời giải:
Đề bài: Cho hình chữ nhật ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng: a) OA = OB = OC = OD. b) ∠OAB = ∠OBA.
Lời giải:
Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh đã hiểu rõ hơn về bài 9 trang 31 sách bài tập Toán 8 - Chân trời sáng tạo tập 2. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!