Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 72 sách bài tập Toán 8 chương trình Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic, kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức.
Cho hình vuông ABCD. Lấy E, F, G, H theo thứ tự thuộc các cạnh AB, BC, CD, DA sao cho \(AE = BF = CG = DH = a\); \(BE = CF = DG = AH = b\).
Đề bài
Cho hình vuông ABCD. Lấy E, F, G, H theo thứ tự thuộc các cạnh AB, BC, CD, DA sao cho \(AE = BF = CG = DH = a\); \(BE = CF = DG = AH = b\). Chứng minh rằng:
a) Tứ giác EFGH là hình gì?
b) Tính diện tích tứ giác EFGH theo a và b.
Phương pháp giải - Xem chi tiết
a) + Sử dụng kiến thức tính chất của hình vuông để chứng minh: Hình vuông có bốn góc vuông và bốn cạnh bằng nhau.
+ Sử dụng kiến thức dấu hiệu nhận biết hình vuông để chứng minh: Hình thoi có một góc vuông là hình vuông.
b) + Sử dụng kiến thức về diện tích hình vuông để chứng minh: Diện tích hình vuông bằng bình phương độ dài cạnh hình vuông.
+ Sử dụng kiến thức về diện tích tam giác vuông để chứng minh: Diện tích tam giác vuông bằng một nửa tích hai cạnh góc vuông.
Lời giải chi tiết
Vì ABCD là hình vuông nên \(\widehat A = \widehat B = \widehat C = \widehat D = {90^0}\)
Tam giác HAE và tam giác EBF có:
\(\widehat A = \widehat B = {90^0},AE = BF\left( { = a} \right),AH = BE\left( { = b} \right)\)
Do đó, \(\Delta HAE = \Delta EBF\left( {cgv - cgv} \right)\), suy ra \(HE = FE\), \(\widehat {{H_1}} = \widehat {{E_2}}\)
Chứng minh tương tự ta có:
\(\Delta HAE = \Delta GDH\left( {cgv - cgv} \right)\) nên \(HE = HG\)
\(\Delta FCG = \Delta GDH\left( {cgv - cgv} \right)\) nên \(GF = HG\)
Do đó, \(HE = FE = HG = GF\). Suy ra, tứ giác EFGH là hình thoi (1)
Ta có: \(\widehat {{E_2}} + \widehat {{E_1}} = \widehat {{H_1}} + \widehat {{E_1}} = {90^0}\). Do đó, \(\widehat {{E_3}} = {90^0}\) (2)
Từ (1) và (2) suy ra: Tứ giác EFGH là hình vuông.
b) Diện tích hình vuông ABCD là: \({S_{ABCD}} = A{B^2} = {\left( {a + b} \right)^2}\)
Diện tích tam giác vuông AHE là: \({S_{AHE}} = \frac{1}{2}AH.AE = \frac{1}{2}ab\)
Tương tự ta có: \({S_{HGD}} = {S_{GFC}} = {S_{EBF}} = \frac{1}{2}ab\)
Do đó: \({S_{EFGH}} = {S_{ABCD}} - \left( {{S_{HGD}} + {S_{GFC}} + {S_{EBF}} + {S_{AHE}}} \right)\)
\( = {\left( {a + b} \right)^2} - 4.\frac{1}{2}ab = {a^2} + 2ab + {b^2} - 2ab = {a^2} + {b^2}\)
Bài 5 trang 72 sách bài tập Toán 8 Chân trời sáng tạo thuộc chương trình học về các tứ giác đặc biệt, cụ thể là hình thang cân. Bài tập này thường yêu cầu học sinh vận dụng các tính chất của hình thang cân để giải quyết các bài toán liên quan đến tính độ dài cạnh, góc, đường chéo, và chứng minh các tính chất hình học.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 5 trang 72, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày một ví dụ minh họa)
Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính độ dài BC.
Lời giải:
Vì ABCD là hình thang cân nên AD = BC. Do đó, BC = 6cm.
Để học tốt môn Toán 8, bạn nên:
Hình thang cân xuất hiện trong nhiều ứng dụng thực tế, chẳng hạn như:
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 5 trang 72 sách bài tập Toán 8 Chân trời sáng tạo. Hãy luyện tập thường xuyên để nắm vững kiến thức và đạt kết quả tốt trong môn Toán 8.