Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8 sách Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 5 trang 25, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán.
Tính: a) \(\frac{{{x^2} - 5x}}{{4{y^2}}}:\frac{{5x}}{{2y}}\);
Đề bài
Tính:
a) \(\frac{{{x^2} - 5x}}{{4{y^2}}}:\frac{{5x}}{{2y}}\);
b) \(\frac{{{x^2} - 1}}{y}:\frac{{x + 1}}{{{y^2}}}\);
c) \(\left( {{x^2} - 2xy} \right):\frac{{5x - 10y}}{x}\);
d) \(\frac{{{x^2} - x}}{{x - y}}:\left( {{x^2} + xy} \right)\);
e) \(\left( {16 - {x^2}} \right):\left( {{x^2} - 4x} \right)\);
g) \(\frac{{4{y^2} - {x^2}}}{{{x^2} + 2xy + {y^2}}}:\frac{{x - 2y}}{{2{x^2} + 2xy}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức chia hai phân thức để tính: Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\) (C khác đa thức không), ta nhân phân thức \(\frac{A}{B}\) với phân thức \(\frac{D}{C}\): \(\frac{A}{B}:\frac{C}{D} = \frac{A}{B}.\frac{D}{C}\)
Lời giải chi tiết
a) \(\frac{{{x^2} - 5x}}{{4{y^2}}}:\frac{{5x}}{{2y}} = \frac{{x\left( {x - 5} \right)}}{{2.2y.y}}.\frac{{2y}}{{5x}} = \frac{{x\left( {x - 5} \right)2y}}{{2.2y.y.5x}} = \frac{{x - 5}}{{10y}}\) ;
b) \(\frac{{{x^2} - 1}}{y}:\frac{{x + 1}}{{{y^2}}} = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{y}.\frac{{y.y}}{{x + 1}} = \frac{{\left( {x - 1} \right)\left( {x + 1} \right).y.y}}{{y\left( {x + 1} \right)}} = y\left( {x - 1} \right)\);
c) \(\left( {{x^2} - 2xy} \right):\frac{{5x - 10y}}{x} = x\left( {x - 2y} \right).\frac{x}{{5\left( {x - 2y} \right)}} = \frac{{x\left( {x - 2y} \right).x}}{{5\left( {x - 2y} \right)}} = \frac{{{x^2}}}{5}\);
d) \(\frac{{{x^2} - x}}{{x - y}}:\left( {{x^2} + xy} \right) = \frac{{x\left( {x - 1} \right)}}{{x - y}}.\frac{1}{{x\left( {x + y} \right)}} = \frac{{x\left( {x - 1} \right)}}{{\left( {x - y} \right)x\left( {x + y} \right)}} = \frac{{x - 1}}{{{x^2} - {y^2}}}\);
e) \(\left( {16 - {x^2}} \right):\left( {{x^2} - 4x} \right) = \left( {4 - x} \right)\left( {4 + x} \right).\frac{1}{{x\left( {x - 4} \right)}} = \frac{{\left( {4 - x} \right)\left( {4 + x} \right)}}{{x\left( {x - 4} \right)}} = \frac{{ - x - 4}}{x}\);
g) \(\frac{{4{y^2} - {x^2}}}{{{x^2} + 2xy + {y^2}}}:\frac{{x - 2y}}{{2{x^2} + 2xy}} = \frac{{\left( {2y - x} \right)\left( {2y + x} \right)}}{{{{\left( {x + y} \right)}^2}}}.\frac{{2x\left( {x + y} \right)}}{{x - 2y}}\)
\( = \frac{{\left( {2y - x} \right)\left( {2y + x} \right)2x\left( {x + y} \right)}}{{{{\left( {x + y} \right)}^2}\left( {x - 2y} \right)}} = \frac{{ - 2x\left( {x + 2y} \right)}}{{x + y}}\).
Bài 5 trang 25 sách bài tập Toán 8 Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về đa thức, phân tích đa thức thành nhân tử và các phép toán trên đa thức. Bài tập này thường yêu cầu học sinh phải hiểu rõ các quy tắc, định lý và kỹ năng giải toán cơ bản để có thể áp dụng một cách linh hoạt và chính xác.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 25 một cách hiệu quả, bạn cần thực hiện theo các bước sau:
Ví dụ: Rút gọn biểu thức sau: (x + 2)(x - 2) + x2
Giải:
(x + 2)(x - 2) + x2 = x2 - 4 + x2 = 2x2 - 4
Để học Toán 8 hiệu quả, bạn có thể áp dụng một số mẹo sau:
Việc giải bài tập Toán 8 không chỉ giúp bạn nắm vững kiến thức mà còn rèn luyện tư duy logic, khả năng giải quyết vấn đề và kỹ năng tính toán. Đây là những kỹ năng quan trọng không chỉ trong học tập mà còn trong cuộc sống.
Hy vọng rằng với hướng dẫn chi tiết và các mẹo học tập trên, bạn sẽ tự tin hơn trong việc giải bài 5 trang 25 sách bài tập Toán 8 Chân trời sáng tạo và đạt kết quả tốt trong môn Toán.