Bài 7 trang 92 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 là một bài tập quan trọng trong chương trình học Toán 8. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học về các định lý, tính chất của hình học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7 trang 92 sách bài tập Toán 8 - Chân trời sáng tạo tập 2, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin làm bài tập.
Một nhóm học sinh gồm 6 bạn có tên là Thái, Thảo, Thanh, Thuận, Vinh, Vũ. Chọn ra ngẫu nhiên 1 bạn trong nhóm. Tính xác suất của các biến cố sau:
Đề bài
Một nhóm học sinh gồm 6 bạn có tên là Thái, Thảo, Thanh, Thuận, Vinh, Vũ. Chọn ra ngẫu nhiên 1 bạn trong nhóm. Tính xác suất của các biến cố sau:
A: “Tên của bạn được chọn bắt đầu bằng chữ V”;
B: “Tên của bạn được chọn gồm 4 chữ cái”;
C: “Tên của bạn được chọn chứa 2 nguyên âm”.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về xác suất của biến cố để tính: Khi tất cả các kết quả của một trò chơi hay một phép thử đều có khả năng xảy ra bằng nhau thì xác suất của biến cố A là tỉ số giữa số kết quả thuận lợi cho A và tổng số kết quả có thể xảy ra của phép thử, tức là:
Lưu ý: Để nhận biết các kết quả có cùng khả năng, chú ý đến các “từ khóa” liên quan đến phép thử: đồng xu, xúc xắc cân đối và đồng chất; các thẻ cùng loại, cùng kích thước; quả bóng, viên bi có cùng kích thước và khối lượng.
Lời giải chi tiết
Vì nhóm học sinh gồm 6 bạn có tên là Thái, Thảo, Thanh, Thuận, Vinh, Vũ nên có 6 kết quả có cùng khả năng xảy ra đối với phép thử chọn ra ngẫu nhiên 1 bạn trong nhóm.
Số các kết quả thuận lợi của biến cố A là 2. Xác suất của biến cố A là: \(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\)
Số các kết quả thuận lợi của biến cố B là 3. Xác suất của biến cố B là: \(P\left( B \right) = \frac{3}{6} = \frac{1}{2}\)
Số các kết quả thuận lợi của biến cố C là 3. Xác suất của biến cố C là: \(P\left( C \right) = \frac{3}{6} = \frac{1}{2}\)
Bài 7 trang 92 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 thuộc chương trình học về tứ giác. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Phương pháp giải bài tập về tứ giác thường bao gồm:
Đề bài: (Giả sử đề bài là một bài toán cụ thể về tứ giác, ví dụ: Cho hình bình hành ABCD, gọi E là giao điểm của hai đường chéo AC và BD. Chứng minh rằng AE = EC và BE = ED.)
Lời giải:
Vì ABCD là hình bình hành nên:
Xét tam giác ABD và tam giác CDB, ta có:
Do đó, tam giác ABD = tam giác CDB (c-g-c). Suy ra AD = BC và ∠ADB = ∠CBD.
Vì ABCD là hình bình hành nên AC và BD cắt nhau tại trung điểm E của mỗi đường. Do đó, AE = EC và BE = ED.
Vậy, ta đã chứng minh được AE = EC và BE = ED.
Ngoài bài 7 trang 92, sách bài tập Toán 8 - Chân trời sáng tạo tập 2 còn có nhiều bài tập tương tự về tứ giác. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập này, học sinh cần nắm vững các kiến thức về tứ giác và vận dụng linh hoạt các phương pháp giải đã học.
Để củng cố kiến thức về tứ giác, học sinh có thể làm thêm các bài tập sau:
Bài 7 trang 92 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về tứ giác và các tính chất của nó. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin giải bài tập và đạt kết quả tốt trong môn Toán.