Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 19 sách bài tập Toán 8 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, mang đến những tài liệu học tập chất lượng và hữu ích.
Rút gọn các phân thức sau: a) \(\frac{{5y - xy}}{{{x^2} - 25}}\);
Đề bài
Rút gọn các phân thức sau:
a) \(\frac{{5y - xy}}{{{x^2} - 25}}\);
b) \(\frac{{9 + 6x + {x^2}}}{{3x + 9}}\)
c) \(\frac{{2{x^3}y + 2x{y^3}}}{{{x^4} - {y^4}}}\)
d) \(\frac{{2 - 4x}}{{4{x^2} - 4x + 1}}\)
e) \(\frac{{x - 2}}{{{x^3} - 8}}\)
g) \(\frac{{{x^4}{y^2} - {x^2}{y^4}}}{{{x^2}\left( {x + y} \right)}}\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức rút gọn phân thức để rút gọn: Để rút gọn một phân thức, ta thường thực hiện như sau:
+ Phân tích cả tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.
+ Chia cả tử vào mẫu cho nhân tử chung.
Lời giải chi tiết
a) \(\frac{{5y - xy}}{{{x^2} - 25}} = \frac{{y\left( {5 - x} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}} = \frac{{ - y}}{{x + 5}}\);
b) \(\frac{{9 + 6x + {x^2}}}{{3x + 9}} = \frac{{{x^2} + 2.x.3 + {3^2}}}{{3\left( {x + 3} \right)}} = \frac{{{{\left( {x + 3} \right)}^2}}}{{3\left( {x + 3} \right)}} = \frac{{x + 3}}{3}\);
c) \(\frac{{2{x^3}y + 2x{y^3}}}{{{x^4} - {y^4}}} = \frac{{2xy\left( {{x^2} + {y^2}} \right)}}{{\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)}} = \frac{{2xy}}{{{x^2} - {y^2}}}\);
d) \(\frac{{2 - 4x}}{{4{x^2} - 4x + 1}} = \frac{{2\left( {1 - 2x} \right)}}{{{{\left( {1 - 2x} \right)}^2}}} = \frac{2}{{1 - 2x}}\);
e) \(\frac{{x - 2}}{{{x^3} - 8}} = \frac{{x - 2}}{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}} = \frac{1}{{{x^2} + 2x + 4}}\);
g) \(\frac{{{x^4}{y^2} - {x^2}{y^4}}}{{{x^2}\left( {x + y} \right)}} = \frac{{{x^2}{y^2}\left( {{x^2} - {y^2}} \right)}}{{{x^2}\left( {x + y} \right)}} = \frac{{{y^2}\left( {x + y} \right)\left( {x - y} \right)}}{{\left( {x + y} \right)}} = {y^2}\left( {x - y} \right)\).
Bài 6 trang 19 sách bài tập Toán 8 Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông. Mục tiêu của bài tập là giúp học sinh rèn luyện kỹ năng chứng minh, tính toán và giải quyết các bài toán thực tế liên quan đến các hình này.
Bài 6 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Đề bài: Cho hình bình hành ABCD. Gọi E là trung điểm của AB. Gọi F là giao điểm của DE và AC. Chứng minh rằng: a) Tam giác ADE = Tam giác BCE. b) AF = FC.
Lời giải:
Vậy, Tam giác ADE = Tam giác BCE (c-g-c)
Vì Tam giác ADE = Tam giác BCE (cmt) nên DE = CE. Do đó, F là trung điểm của DE và CE. Xét tam giác ADC, ta có E là trung điểm của AB và F là giao điểm của DE và AC. Áp dụng định lý Menelaus cho tam giác ADC với đường thẳng DE, ta có:
(AE/EB) * (BC/CD) * (DF/FA) = 1
Thay AE/EB = 1 và BC/CD = 1 (vì ABCD là hình bình hành), ta được DF/FA = 1, suy ra DF = FA. Do đó, AF = FC.
Đề bài: Cho hình chữ nhật ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng: a) OA = OB = OC = OD. b) ∠OAB = ∠OBA.
Lời giải:
Vì ABCD là hình chữ nhật nên AC = BD và AC cắt BD tại O. Do đó, OA = OC = 1/2 AC và OB = OD = 1/2 BD. Suy ra OA = OB = OC = OD.
Vì OA = OB (cmt) nên tam giác OAB cân tại O. Suy ra ∠OAB = ∠OBA.
Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh đã hiểu rõ hơn về bài 6 trang 19 sách bài tập Toán 8 Chân trời sáng tạo. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!