Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 4 trang 26 sách bài tập Toán 8 Chân trời sáng tạo. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày các bước giải một cách rõ ràng và logic nhất.
Mục tiêu của chúng tôi là giúp bạn nắm vững kiến thức Toán 8, tự tin giải các bài tập và đạt kết quả tốt trong học tập.
Phân tích đa thức \(16{x^2} - {y^4}\) thành nhân tử, ta nhận được A. \(\left( {4{x^2} - {y^2}} \right)\left( {4{x^2} + {y^2}} \right)\)
Đề bài
Phân tích đa thức \(16{x^2} - {y^4}\) thành nhân tử, ta nhận được
A. \(\left( {4{x^2} - {y^2}} \right)\left( {4{x^2} + {y^2}} \right)\)
B. \({x^2}\left( {2 - y} \right)\left( {2 + y} \right)\left( {4x + {y^2}} \right)\)
C. \(\left( {{y^2} + 4x} \right)\left( {{y^2} - 4x} \right)\)
D. \(\left( {4x - {y^2}} \right)\left( {4x + {y^2}} \right)\)
Phương pháp giải - Xem chi tiết
Phân tích đa thức \(16{x^2} - {y^4}\) thành nhân tử, ta nhận được
A. \(\left( {4{x^2} - {y^2}} \right)\left( {4{x^2} + {y^2}} \right)\)
B. \({x^2}\left( {2 - y} \right)\left( {2 + y} \right)\left( {4x + {y^2}} \right)\)
C. \(\left( {{y^2} + 4x} \right)\left( {{y^2} - 4x} \right)\)
D. \(\left( {4x - {y^2}} \right)\left( {4x + {y^2}} \right)\)
Lời giải chi tiết
\(16{x^2} - {y^4} = {\left( {4x} \right)^2} - {\left( {{y^2}} \right)^2} = \left( {4x - {y^2}} \right)\left( {4x + {y^2}} \right)\)
Chọn D
Bài 4 trang 26 sách bài tập Toán 8 Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông. Bài tập này yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý và tính chất của các hình này để giải quyết các bài toán liên quan đến tính độ dài đoạn thẳng, số đo góc và diện tích.
Bài 4 trang 26 thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 26 một cách hiệu quả, bạn cần:
Ví dụ: Cho hình bình hành ABCD, biết AB = 5cm, BC = 3cm và góc ABC = 60 độ. Tính diện tích của hình bình hành ABCD.
Giải:
Diện tích của hình bình hành ABCD được tính theo công thức: S = AB * BC * sin(ABC)
Thay số vào công thức, ta có: S = 5 * 3 * sin(60) = 5 * 3 * (√3/2) = (15√3)/2 cm2
Để học tốt Toán 8, bạn có thể tham khảo các tài liệu sau:
Bài 4 trang 26 sách bài tập Toán 8 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về các hình bình hành, hình chữ nhật, hình thoi và hình vuông. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!