Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 30 sách bài tập toán 8 - Chân trời sáng tạo tập 2

Giải bài 5 trang 30 sách bài tập toán 8 - Chân trời sáng tạo tập 2

Giải bài 5 trang 30 Sách bài tập Toán 8 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn cách giải bài 5 trang 30 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy logic và vận dụng kiến thức đã học. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Phương trình \(x - 6 = 10 - x\) có nghiệm là A. \(x = - 8\).

Đề bài

Phương trình \(x - 6 = 10 - x\) có nghiệm là

A. \(x = - 8\).

B. \(x = 4\).

C. \(x = 8\).

D. \(x = - 4\).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 30 sách bài tập toán 8 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức giải phương trình bậc nhất để tìm nghiệm: Để giải một phương trình, ta thường sử dụng các quy tắc biến đổi sau:

+ Chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó (Quy tắc chuyển vế);

+ Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

+ Chia cả hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

Áp dụng các quy tắc trên, phương trình \(ax + b = 0\) (với \(a \ne 0\)) được giải như sau:

\(ax + b = 0\)

\(ax = - b\)

\(x = \frac{{ - b}}{a}\)

Lời giải chi tiết

\(x - 6 = 10 - x\)

\(x + x = 10 + 6\)

\(2x = 16\)

\(x = 8\)

Chọn C

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 5 trang 30 sách bài tập toán 8 - Chân trời sáng tạo tập 2 đặc sắc thuộc chuyên mục vở bài tập toán 8 trên tài liệu toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 5 trang 30 Sách bài tập Toán 8 - Chân trời sáng tạo tập 2: Tổng quan

Bài 5 trang 30 sách bài tập Toán 8 Chân trời sáng tạo tập 2 thuộc chương trình học về các tứ giác đặc biệt. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về hình bình hành, hình chữ nhật, hình thoi, hình vuông để chứng minh các tính chất hoặc giải các bài toán liên quan đến các tứ giác này.

Nội dung bài tập

Bài 5 thường bao gồm các dạng bài tập sau:

  • Chứng minh một tứ giác là hình bình hành, hình chữ nhật, hình thoi hoặc hình vuông dựa trên các điều kiện cho trước.
  • Tính độ dài các cạnh, số đo các góc của các tứ giác đặc biệt.
  • Giải các bài toán thực tế liên quan đến các tứ giác đặc biệt.

Hướng dẫn giải chi tiết

Để giải bài 5 trang 30 sách bài tập Toán 8 Chân trời sáng tạo tập 2 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Các dấu hiệu nhận biết các tứ giác đặc biệt: Hình bình hành, hình chữ nhật, hình thoi, hình vuông có những dấu hiệu nhận biết riêng biệt. Bạn cần ghi nhớ và vận dụng chúng một cách linh hoạt.
  2. Các tính chất của các tứ giác đặc biệt: Mỗi tứ giác đặc biệt có những tính chất riêng. Bạn cần hiểu rõ và biết cách áp dụng chúng vào giải bài tập.
  3. Các định lý liên quan: Một số bài tập có thể yêu cầu bạn vận dụng các định lý liên quan đến các tứ giác đặc biệt.

Ví dụ minh họa

Bài toán: Cho hình bình hành ABCD. Gọi E là trung điểm của cạnh AB. Gọi F là giao điểm của DE và AC. Chứng minh rằng AF = 2FC.

Giải:

  1. Xét tam giác ABC, E là trung điểm của AB, DE cắt AC tại F. Theo định lý Menelaus cho tam giác ABC và đường thẳng DE, ta có:
  2. (AE/EB) * (BD/DC) * (CF/FA) = 1
  3. Vì E là trung điểm của AB nên AE/EB = 1. Vì ABCD là hình bình hành nên BD = DC. Do đó:
  4. 1 * 1 * (CF/FA) = 1
  5. Suy ra CF/FA = 1, hay CF = FA.
  6. Vậy AF = 2FC.

Mẹo giải nhanh

Để giải nhanh các bài tập về tứ giác đặc biệt, bạn có thể áp dụng một số mẹo sau:

  • Vẽ hình chính xác và đầy đủ.
  • Phân tích đề bài và xác định các yếu tố đã cho và yếu tố cần tìm.
  • Vận dụng các kiến thức và tính chất đã học một cách linh hoạt.
  • Sử dụng các định lý và công thức liên quan.

Bài tập luyện tập

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo các bài tập sau:

  • Bài 1: Cho hình chữ nhật ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng OA = OB = OC = OD.
  • Bài 2: Cho hình thoi ABCD. Gọi M là trung điểm của cạnh BC. Chứng minh rằng AM vuông góc với DM.
  • Bài 3: Cho hình vuông ABCD. Gọi E là trung điểm của cạnh CD. Tính số đo góc ABE.

Kết luận

Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể hiểu rõ cách giải bài 5 trang 30 sách bài tập Toán 8 Chân trời sáng tạo tập 2. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tứ giácDấu hiệu nhận biếtTính chất
Hình bình hànhHai cặp cạnh đối song songHai cặp cạnh đối song song và bằng nhau, hai đường chéo cắt nhau tại trung điểm của mỗi đường
Hình chữ nhậtCó bốn góc vuôngCó bốn góc vuông, hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường
Hình thoiBốn cạnh bằng nhauBốn cạnh bằng nhau, hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường
Hình vuôngCó bốn góc vuông và bốn cạnh bằng nhauCó bốn góc vuông, bốn cạnh bằng nhau, hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường

Tài liệu, đề thi và đáp án Toán 8