Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 18 trang 74 sách bài tập Toán 8 chương trình Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho hình chữ nhật ABCD có \(AB = 2BC\). Gọi I là trung điểm của AB và K là trung điểm của CD. Chứng minh:
Đề bài
Cho hình chữ nhật ABCD có \(AB = 2BC\). Gọi I là trung điểm của AB và K là trung điểm của CD. Chứng minh:
a) AIKD và BIKC là hình vuông.
b) \(IK = \frac{{DC}}{2}\) và \(\widehat {DIC} = {90^0}\).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về dấu hiệu nhận biết hình vuông để chứng minh: Hình thoi có một góc vuông là hình vuông.
b) Sử dụng kiến thức về tính chất của hình vuông để chứng minh: Trong hình vuông:
+ Các đường chéo là các đường phân giác của các góc hình vuông
+ Có 4 góc vuông.
Lời giải chi tiết
a) Vì I là trung điểm của AB nên \(AI = IB = \frac{1}{2}AB\)
Vì K là trung điểm của CD nên \(DK = CK = \frac{1}{2}DC\)
Vì ABCD là hình chữ nhật nên AB//CD, \(AB = CD\), \(AD = BC\)
Do đó, \(IA = IB = DK = CK\)
Mà \(AB = 2BC\) nên \(IA = IB = DK = CK = AD = BC\)
Tứ giác AIKD có: \(DK = AI\), AI//DK nên AIKD là hình bình hành. Mà \(IA = AD\) nên AIKD là hình thoi. Lại có \(\widehat A = {90^0}\) nên AIKD là hình vuông.
Tứ giác BIKC có: \(IB = KC\), BI//CK nên BIKC là hình bình hành. Mà \(IB = BC\) nên BIKC là hình thoi. Lại có \(\widehat B = {90^0}\) nên BIKC là hình vuông.
b) Vì AIKD là hình vuông nên \(IK = DK = \frac{{DC}}{2}\) và \(\widehat {IDC} = \frac{1}{2}\widehat {ADC} = {45^0}\)
Vì BIKC là hình vuông nên \(\widehat {DCI} = \frac{1}{2}\widehat {DCB} = {45^0}\)
Tam giác DIC có: \(\widehat {DIC} = {180^0} - \widehat {DCI} - \widehat {CDI} = {90^0}\)
Bài 18 trang 74 sách bài tập Toán 8 Chân trời sáng tạo thuộc chương trình học về các tứ giác đặc biệt, cụ thể là hình thang cân. Bài tập này thường yêu cầu học sinh vận dụng các tính chất của hình thang cân để giải quyết các vấn đề liên quan đến độ dài cạnh, góc, đường chéo và diện tích.
Bài 18 thường bao gồm các dạng bài tập sau:
Để giải bài 18 trang 74 sách bài tập Toán 8 Chân trời sáng tạo một cách hiệu quả, bạn cần:
Bài tập: Cho hình thang cân ABCD (AB // CD), AB = 6cm, CD = 10cm, AD = 5cm. Tính độ dài BC.
Giải:
Vì ABCD là hình thang cân nên AD = BC. Do đó, BC = 5cm.
Để giải nhanh các bài tập về hình thang cân, bạn có thể sử dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác.
Bài 18 trang 74 sách bài tập Toán 8 Chân trời sáng tạo là một bài tập quan trọng giúp bạn hiểu sâu hơn về hình thang cân và các tính chất của nó. Hy vọng với hướng dẫn chi tiết và các mẹo giải nhanh trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!
Khái niệm | Định nghĩa |
---|---|
Hình thang cân | Là hình thang có hai cạnh bên bằng nhau. |
Góc đáy | Là góc tạo bởi một cạnh đáy và một cạnh bên. |