Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 25 sách bài tập Toán 8 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Tính: a) \(\frac{{{x^2} - 2xy}}{y}.\frac{{{y^2}}}{x}\);
Đề bài
Tính:
a) \(\frac{{{x^2} - 2xy}}{y}.\frac{{{y^2}}}{x}\);
b) \(\frac{{{x^2} - 9{y^2}}}{{3x{y^2}}}.\frac{{xy}}{{x + 3y}}\);
c) \(\frac{{1 - {x^2}}}{{2x + 4y}}.\frac{{{x^2} + 4xy + 4{y^2}}}{{3 - 3x}}\);
d) \(\frac{{{x^3} - {y^3}}}{{x + y}}.\frac{{{x^2} - {y^2}}}{{{x^2} + xy + {y^2}}}\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức nhân hai phân thức để tính: Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau: \(\frac{A}{B}.\frac{C}{D} = \frac{{A.C}}{{B.D}}\)
Lời giải chi tiết
a) \(\frac{{{x^2} - 2xy}}{y}.\frac{{{y^2}}}{x} = \frac{{x\left( {x - 2y} \right).{y^2}}}{{xy}} = y\left( {x - 2y} \right)\);
b) \(\frac{{{x^2} - 9{y^2}}}{{3x{y^2}}}.\frac{{xy}}{{x + 3y}} = \frac{{\left( {x - 3y} \right)\left( {x + 3y} \right)xy}}{{3x{y^2}\left( {x + 3y} \right)}} = \frac{{x - 3y}}{{3y}}\);
c) \(\frac{{1 - {x^2}}}{{2x + 4y}}.\frac{{{x^2} + 4xy + 4{y^2}}}{{3 - 3x}} = \frac{{\left( {1 - x} \right)\left( {1 + x} \right){{\left( {x + 2y} \right)}^2}}}{{2\left( {x + 2y} \right)3\left( {1 - x} \right)}} = \frac{{\left( {1 + x} \right)\left( {x + 2y} \right)}}{6}\);
d) \(\frac{{{x^3} - {y^3}}}{{x + y}}.\frac{{{x^2} - {y^2}}}{{{x^2} + xy + {y^2}}} = \frac{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\left( {x - y} \right)\left( {x + y} \right)}}{{\left( {x + y} \right)\left( {{x^2} + xy + {y^2}} \right)}} = {\left( {x - y} \right)^2}\).
Bài 3 trang 25 sách bài tập Toán 8 - Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông. Bài tập này yêu cầu học sinh phải hiểu rõ các định nghĩa, tính chất và dấu hiệu nhận biết của các loại hình này để giải quyết các bài toán liên quan đến tính độ dài đoạn thẳng, số đo góc, diện tích và chu vi.
Bài 3 trang 25 thường bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả bài 3 trang 25 sách bài tập Toán 8 - Chân trời sáng tạo, bạn cần nắm vững các phương pháp sau:
Ví dụ: Cho hình bình hành ABCD, biết AB = 5cm, AD = 3cm và góc BAD = 60o. Tính diện tích hình bình hành ABCD.
Giải:
Diện tích hình bình hành ABCD được tính theo công thức: S = AB * AD * sin(BAD)
Thay số, ta có: S = 5 * 3 * sin(60o) = 15 * (√3/2) ≈ 12.99 cm2
Để học tốt Toán 8, bạn có thể tham khảo các tài liệu sau:
Bài 3 trang 25 sách bài tập Toán 8 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về các loại hình và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn chi tiết và phương pháp giải hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin giải quyết bài tập này một cách thành công. Chúc bạn học tốt!