Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 63 sách bài tập Toán 8 - Chân trời sáng tạo tập 2. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình ôn tập và làm bài tập Toán 8.
Chúng tôi sẽ cung cấp đáp án, phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Anh Minh dự định thiết kế sân vườn nhà mình có hai bồn hoa hình tam giác đồng dạng với nhau (Hình 6).
Đề bài
Anh Minh dự định thiết kế sân vườn nhà mình có hai bồn hoa hình tam giác đồng dạng với nhau (Hình 6). Bồn hoa thứ nhất có chu vi 7,5m và cạnh dài nhất là 3,5m. Bồn hoa thứ hai có chu vi 4,5m. Tính độ dài cạnh dài nhất của bồn hoa thứ hai.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về trường hợp đồng dạng thứ nhất của hai tam giác (c.c.c) để tính:
+ Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.
+ Nếu tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số k thì tỉ số chu vi hai tam giác đó cũng bằng k.
Lời giải chi tiết
Vì $\Delta ABC\backsim \Delta DEF$ (giả thiết) nên \(\frac{{BC}}{{EF}} = \frac{{{P_{\Delta ABC}}}}{{{P_{\Delta DEF}}}} = \frac{{7,5}}{{4,5}} = \frac{5}{3}\)
Do đó, \(\frac{{3,5}}{{EF}} = \frac{5}{3}\), suy ra \(EF = 2,1m\)
Bài 4 trang 63 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý liên quan đến hình thang cân để giải quyết các bài toán thực tế.
Bài 4 trang 63 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 63 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 một cách hiệu quả, các em cần thực hiện theo các bước sau:
Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = BC = 6cm. Tính chiều cao của hình thang.
Giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là chiều cao của hình thang.
Vì ABCD là hình thang cân nên DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:
AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75
Suy ra, AH = √29.75 ≈ 5.45cm.
Vậy, chiều cao của hình thang ABCD là khoảng 5.45cm.
Ngoài việc giải bài 4 trang 63 sách bài tập Toán 8 - Chân trời sáng tạo tập 2, các em nên tìm hiểu thêm về các kiến thức liên quan đến hình thang cân, bao gồm:
Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, các em có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 8 - Chân trời sáng tạo tập 2 và các tài liệu tham khảo khác.
Bài 4 trang 63 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp các em hiểu rõ hơn về hình thang cân và các ứng dụng của nó. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin hơn trong việc giải bài tập và đạt kết quả tốt trong môn Toán.