Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 75 sách bài tập Toán 8 - Chân trời sáng tạo tập 2. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình ôn tập và làm bài tập Toán 8.
Chúng tôi sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để các em hiểu rõ bản chất của bài toán.
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng: a) \(AD.BH = AC.BD\).
Đề bài
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng:
a) \(AD.BH = AC.BD\).
b) \(HA.HD = HB.HE = HC.HF\).
c) \(B{C^2} = BE.BH + CF.CH\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về trường hợp đồng dạng thứ ba của hai tam giác (g.g) để tính: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.
Lời giải chi tiết
a) Tam giác ADC và tam giác BDH có:
\(\widehat {ADC} = \widehat {BDH} = {90^0},\widehat {DAC} = \widehat {HBD}\) (cùng phụ với góc ECB). Do đó, $\Delta ADC\backsim \Delta BDH\left( g.g \right)$, suy ra \(\frac{{AD}}{{BD}} = \frac{{AC}}{{BH}}\) nên \(AD.BH = AC.BD\)
b) Tam giác HEA và tam giác HDB có:
\(\widehat {HEA} = \widehat {HDB} = {90^0},\widehat {AHE} = \widehat {BHD}\) (hai góc đối đỉnh)
Do đó, $\Delta HEA\backsim \Delta HDB\left( g.g \right)$, suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\), do đó \(HA.HD = HB.HE\)
Tam giác HFA và tam giác HDC có:
\(\widehat {HFA} = \widehat {HDC} = {90^0},\widehat {FHA} = \widehat {DHC}\) (hai góc đối đỉnh)
Do đó, $\Delta HFA\backsim \Delta HDC\left( g.g \right)$, suy ra \(\frac{{HF}}{{HD}} = \frac{{HA}}{{HC}}\), do đó, \(HA.HD = HF.HC\)
Vậy \(HA.HD = HB.HE = HC.HF\)
c) Tam giác BCE và tam giác BHD có:
\(\widehat {BEC} = \widehat {BDH} = {90^0},\widehat {HBD}\;chung\)
Do đó, $\Delta BCE\backsim \Delta BHD\left( g.g \right)$, suy ra \(\frac{{BC}}{{BH}} = \frac{{BE}}{{BD}}\) hay \(BC.BD = BE.BH\)
Tam giác BCF và tam giác HCD có:
\(\widehat {BFC} = \widehat {CDH} = {90^0},\widehat {HCD}\;chung\)
Do đó, $\Delta BCF\backsim \Delta HCD\left( g.g \right)$, suy ra \(\frac{{BC}}{{CH}} = \frac{{CF}}{{CD}}\) hay \(BC.CD = CF.CH\).
Ta có: \(BE.BH + CF.CH = BC.CD + BC.BD\)
\( = BC\left( {BD + CD} \right) = B{C^2}\)
Bài 7 trang 75 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân và ứng dụng vào giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các định lý, tính chất đã học và khả năng phân tích, suy luận logic để tìm ra lời giải chính xác.
Bài 7 trang 75 sách bài tập Toán 8 - Chân trời sáng tạo tập 2 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 7 trang 75 sách bài tập Toán 8 - Chân trời sáng tạo tập 2, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Giả sử bài tập cụ thể là: Cho hình thang cân ABCD (AB // CD), có AD = BC. Gọi E là giao điểm của AC và BD. Chứng minh rằng AE = BE và DE = CE.)
Do đó, ΔADC ≅ ΔBCD (c-g-c)
Do đó, ΔAED ≅ ΔBEC (g-g-c)
Để giải tốt các bài tập hình học, các em cần lưu ý những điều sau:
Để củng cố kiến thức, các em có thể làm thêm các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ hiểu rõ hơn về cách giải bài 7 trang 75 sách bài tập Toán 8 - Chân trời sáng tạo tập 2. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!