Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 5 trang 22 sách bài tập Toán 8 Chân trời sáng tạo. Chúng tôi hiểu rằng việc giải bài tập có thể gặp nhiều khó khăn, đặc biệt là với những bài toán đòi hỏi tư duy và vận dụng kiến thức.
Mục tiêu của chúng tôi là giúp bạn nắm vững kiến thức, rèn luyện kỹ năng giải toán và tự tin hơn trong học tập.
Tính: a) \(x - \frac{{2x - y}}{4} + \frac{{x + 4y}}{{12}}\);
Đề bài
Tính:
a) \(x - \frac{{2x - y}}{4} + \frac{{x + 4y}}{{12}}\);
b) \(\frac{y}{x} - \frac{x}{y} - \frac{{{x^2} + {y^2}}}{{xy}}\);
c) \(\frac{4}{{x + 2}} - \frac{3}{{x - 2}} + \frac{{12}}{{{x^2} - 4}}\);
d) \(\frac{{x + y}}{{{x^2} - xy}} - \frac{{4x}}{{{x^2} - {y^2}}} - \frac{{x - y}}{{{x^2} + xy}}\).
Phương pháp giải - Xem chi tiết
Tính:
a) \(x - \frac{{2x - y}}{4} + \frac{{x + 4y}}{{12}}\);
b) \(\frac{y}{x} - \frac{x}{y} - \frac{{{x^2} + {y^2}}}{{xy}}\);
c) \(\frac{4}{{x + 2}} - \frac{3}{{x - 2}} + \frac{{12}}{{{x^2} - 4}}\);
d) \(\frac{{x + y}}{{{x^2} - xy}} - \frac{{4x}}{{{x^2} - {y^2}}} - \frac{{x - y}}{{{x^2} + xy}}\).
Lời giải chi tiết
a) \(x - \frac{{2x - y}}{4} + \frac{{x + 4y}}{{12}} = \frac{{12x}}{{12}} - \frac{{3\left( {2x - y} \right)}}{{12}} + \frac{{x + 4y}}{{12}} = \frac{{12x - 6x + 3y + x + 4y}}{{12}} = \frac{{7x + 7y}}{{12}}\)
b) \(\frac{y}{x} - \frac{x}{y} - \frac{{{x^2} + {y^2}}}{{xy}} = \frac{{{y^2}}}{{xy}} - \frac{{{x^2}}}{{xy}} - \frac{{{x^2} + {y^2}}}{{xy}} = \frac{{{y^2} - {x^2} - {x^2} - {y^2}}}{{xy}} = \frac{{ - 2{x^2}}}{{xy}} = \frac{{ - 2x}}{y}\)
c) \(\frac{4}{{x + 2}} - \frac{3}{{x - 2}} + \frac{{12}}{{{x^2} - 4}} = \frac{{4\left( {x - 2} \right)}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} - \frac{{3\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} + \frac{{12}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}\)
\( = \frac{{4x - 8 - 3x - 6 + 12}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{{x - 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{1}{{x + 2}}\)
d) \(\frac{{x + y}}{{{x^2} - xy}} - \frac{{4x}}{{{x^2} - {y^2}}} - \frac{{x - y}}{{{x^2} + xy}} = \frac{{{{\left( {x + y} \right)}^2}}}{{x\left( {x + y} \right)\left( {x - y} \right)}} - \frac{{4{x^2}}}{{x\left( {x + y} \right)\left( {x - y} \right)}} - \frac{{{{\left( {x - y} \right)}^2}}}{{x\left( {x + y} \right)\left( {x - y} \right)}}\)
\( = \frac{{{x^2} + 2xy + {y^2} - 4{x^2} - {x^2} + 2xy - {y^2}}}{{x\left( {x + y} \right)\left( {x - y} \right)}} = \frac{{4xy - 4{x^2}}}{{x\left( {x + y} \right)\left( {x - y} \right)}} = \frac{{ - 4x\left( {x - y} \right)}}{{x\left( {x + y} \right)\left( {x - y} \right)}} = \frac{{ - 4}}{{x + y}}\)
Bài 5 trang 22 sách bài tập Toán 8 Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về đa thức, phân thức đại số để giải các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các quy tắc cộng, trừ, nhân, chia đa thức và phân thức, cũng như khả năng biến đổi các biểu thức đại số một cách linh hoạt.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 22 sách bài tập Toán 8 Chân trời sáng tạo một cách hiệu quả, bạn cần:
Ví dụ 1: Thực hiện phép tính: (2x + 3y) + (x - y)
Giải: (2x + 3y) + (x - y) = 2x + 3y + x - y = (2x + x) + (3y - y) = 3x + 2y
Ví dụ 2: Rút gọn biểu thức: (x + 2)(x - 2)
Giải: (x + 2)(x - 2) = x2 - 22 = x2 - 4
Để giải nhanh các bài tập về đa thức và phân thức đại số, bạn có thể sử dụng các mẹo sau:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Bài 5 trang 22 sách bài tập Toán 8 Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức về đa thức và phân thức đại số. Hy vọng với hướng dẫn chi tiết và các mẹo giải nhanh trên đây, bạn sẽ tự tin hơn trong việc giải bài tập và đạt kết quả tốt trong môn Toán.