Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 65 sách bài tập Toán 8 Chân trời sáng tạo. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày các bước giải một cách rõ ràng và logic nhất.
Mục tiêu của chúng tôi là giúp bạn nắm vững kiến thức Toán 8, tự tin giải các bài tập và đạt kết quả tốt trong học tập.
Cho hình bình hành ABCD. Trên các cạnh AB và CD, lần lượt lấy các điểm M và N sao cho \(AM = CN\).
Đề bài
Cho hình bình hành ABCD. Trên các cạnh AB và CD, lần lượt lấy các điểm M và N sao cho \(AM = CN\). Gọi O là giao điểm của MN và AC. Chứng minh rằng ba điểm B, O, D thẳng hàng.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất hình bình hành để chứng minh: Hình bình hành có
+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
+ Hai cạnh đối song song.
Lời giải chi tiết
Vì tứ giác ABCD là hình bình hành nên AB//CD. Do đó, \(\widehat {MAO} = \widehat {OCN}\) (hai góc so le trong), \(\widehat {AMO} = \widehat {ONC}\) (hai góc so le trong)
Tam giác MAO và tam giác NCO có:
\(\widehat {MAO} = \widehat {OCN}\) (cmt), \(AM = CN\)(gt), \(\widehat {AMO} = \widehat {ONC}\) (cmt)
Do đó, \(\Delta MAO = \Delta NCO\left( {g - c - g} \right)\)
Suy ra: \(OA = OC\) nên O là trung điểm của AC.
Vì ABCD là hình bình hành nên hai đường chéo AC và BD cắt nhau tại trung điểm O của AC nên O là trung điểm của BD. Suy ra, ba điểm B, O, D thẳng hàng.
Bài 3 trang 65 sách bài tập Toán 8 Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh phải hiểu rõ định nghĩa, các tính chất đặc trưng của hình thang cân, cũng như các phương pháp chứng minh một tứ giác là hình thang cân.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 3 trang 65, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lời giải sẽ bao gồm các bước sau:
Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính độ dài đường cao của hình thang.
Lời giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là đường cao của hình thang.
Vì ABCD là hình thang cân nên DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:
AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75
Suy ra, AH = √29.75 ≈ 5.45cm.
Vậy, đường cao của hình thang ABCD là khoảng 5.45cm.
Để giải bài tập về hình thang cân một cách hiệu quả, các em học sinh cần lưu ý những điều sau:
Ngoài sách giáo khoa và sách bài tập, các em học sinh có thể tham khảo thêm các tài liệu sau:
Bài 3 trang 65 sách bài tập Toán 8 Chân trời sáng tạo là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hình thang cân. Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong học tập.