Logo Header
  1. Môn Toán
  2. Giải bài 17 trang 74 sách bài tập toán 8 - Chân trời sáng tạo

Giải bài 17 trang 74 sách bài tập toán 8 - Chân trời sáng tạo

Giải bài 17 trang 74 Sách bài tập Toán 8 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 17 trang 74 sách bài tập Toán 8 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Lấy các điểm M, N, P, Q lần lượt là trung điểm của AO, BO, CO, DO.

Đề bài

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Lấy các điểm M, N, P, Q lần lượt là trung điểm của AO, BO, CO, DO.

a) Chứng minh tứ giác MNPQ là hình bình hành.

b) Chứng minh tứ giác ANCQ là hình bình hành.

Phương pháp giải - Xem chi tiếtGiải bài 17 trang 74 sách bài tập toán 8 - Chân trời sáng tạo 1

a) Sử dụng kiến thức về dấu hiệu nhận biết hình bình hành để chứng minh: Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành

b) Sử dụng kiến thức về dấu hiệu nhận biết hình bình hành để chứng minh: Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành.

Lời giải chi tiết

Giải bài 17 trang 74 sách bài tập toán 8 - Chân trời sáng tạo 2

a) Vì ABCD là hình bình hành nên \(AO = CO,BO = DO\), \(AB = CD,AD = BC\), AB//CD, AD//BC

Vì M, P lần lượt là trung điểm của AO, CO nên \(MA = MO = \frac{1}{2}AO = \frac{1}{2}CO = OP = PC\)

Vì N, Q lần lượt là trung điểm của BO, DO nên \(NB = NO = \frac{1}{2}BO = \frac{1}{2}DO = OQ = QD\)

Tứ giác MNPQ có: \(MO = OP,NO = OQ\) nên tứ giác MNPQ là hình bình hành.

b) Vì AB//CD nên \(\widehat {ABN} = \widehat {QDC}\) (hai góc so le trong)

Tam giác ABN và tam giác CDQ có:

\(AB = CD\left( {cmt} \right),\widehat {ABN} = \widehat {QDC}\left( {cmt} \right),NB = DQ\left( {cmt} \right)\)

Do đó, \(\Delta ABN = \Delta CDQ\left( {c - g - c} \right)\) nên \(AN = CQ\)

Vì AD//CB nên \(\widehat {QDA} = \widehat {NBC}\) (hai góc so le trong)

Tam giác ADQ và tam giác CBN có:

\(AD = CB\left( {cmt} \right),\widehat {QDA} = \widehat {NBC}\left( {cmt} \right),DQ = NB\left( {cmt} \right)\)

Do đó, \(\Delta ADQ = \Delta CBN\left( {c - g - c} \right)\) nên \(AQ = CN\)

Tứ giác ANCQ có: \(AN = CQ\), \(AQ = CN\) nên tứ giác ANCQ là hình bình hành. 

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 17 trang 74 sách bài tập toán 8 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sách giáo khoa toán 8 trên toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 17 trang 74 Sách bài tập Toán 8 - Chân trời sáng tạo: Tổng quan

Bài 17 trang 74 sách bài tập Toán 8 - Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập

Bài 17 trang 74 sách bài tập Toán 8 - Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Bài tập 1: Chứng minh một hình thang cân có các tính chất đặc biệt.
  • Bài tập 2: Tính độ dài các cạnh, đường cao của hình thang cân khi biết một số thông tin nhất định.
  • Bài tập 3: Giải các bài toán thực tế liên quan đến hình thang cân.

Hướng dẫn giải chi tiết

Để giải bài 17 trang 74 sách bài tập Toán 8 - Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa hình thang cân: Hình thang cân là hình thang có hai cạnh bên song song.
  2. Tính chất của hình thang cân:
    • Hai góc kề một cạnh bên bằng nhau.
    • Hai đường chéo bằng nhau.
    • Tổng hai góc một đáy bằng 180 độ.
  3. Các công thức tính diện tích hình thang cân: S = (a + b)h/2 (trong đó a, b là độ dài hai đáy, h là đường cao).

Ví dụ minh họa

Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính đường cao của hình thang.

Lời giải:

Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK = h (đường cao của hình thang).

Ta có: HK = AB = 5cm. Suy ra: DH = KC = (CD - AB)/2 = (10 - 5)/2 = 2.5cm.

Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:

AD2 = AH2 + DH2

62 = h2 + 2.52

h2 = 36 - 6.25 = 29.75

h = √29.75 ≈ 5.45cm

Vậy, đường cao của hình thang là khoảng 5.45cm.

Mẹo giải nhanh

Để giải nhanh các bài tập về hình thang cân, bạn nên:

  • Vẽ hình chính xác và đầy đủ.
  • Sử dụng các tính chất của hình thang cân một cách linh hoạt.
  • Áp dụng các công thức tính toán một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.

Bài tập luyện tập

Để củng cố kiến thức về bài 17 trang 74 sách bài tập Toán 8 - Chân trời sáng tạo, bạn có thể tự giải các bài tập sau:

  • Bài 18 trang 74 sách bài tập Toán 8 - Chân trời sáng tạo.
  • Bài 19 trang 74 sách bài tập Toán 8 - Chân trời sáng tạo.
  • Các bài tập tương tự trong các đề thi Toán 8.

Kết luận

Bài 17 trang 74 sách bài tập Toán 8 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn đã có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 8