Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8 sách Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 3 trang 71, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán.
Cho tam giác ABC vuông tại A, \(AB = 4cm,AC = 8cm.\) Gọi E là trung điểm của AC, M là trung điểm của BC.
Đề bài
Cho tam giác ABC vuông tại A, \(AB = 4cm,AC = 8cm.\) Gọi E là trung điểm của AC, M là trung điểm của BC.
a) Tính EM.
b) Vẽ tia Bx song song với AC sao cho Bx cắt EM tại D. Chứng minh tứ giác ABDE là hình vuông.
c) Gọi I là giao điểm của BE và AD, K là giao điểm của BE và AM. Chứng minh tứ giác BDCE là hình bình hành và \(DC = 6KI\).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức: Trong một tam giác, đường thẳng đi qua trung điểm hai cạnh thì song song và bằng \(\frac{1}{2}\) cạnh còn lại.
b) Sử dụng kiến thức về dấu hiệu nhận biết hình vuông để chứng minh: Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.
c) + Sử dụng kiến thức về tính chất hình vuông để chứng minh: Hình vuông có bốn cạnh bằng nhau.
+ Sử dụng kiến thức về dấu hiệu nhận biết hình bình hành để chứng minh: Tứ giác có một cặp cạnh đối song song và bằng nhau là hình bình hành.
Lời giải chi tiết
Xét bài toán phụ: Cho tam giác ABC có M, N lần lượt là trung điểm của cạnh AB, AC. Lấy P đối xứng với M qua N. Chứng minh rằng MN//BC, \(MN = \frac{{BC}}{2}\)
Chứng minh:
Tam giác AMN và tam giác CPN có:
\(NA = NC\left( {gt} \right),\widehat {{N_1}} = \widehat {{N_2}}\) (hai góc đối đỉnh), \(NM = NP\) (gt)
Do đó, \(\Delta ANM = \Delta CNP\left( {c - g - c} \right)\)
Suy ra \(\widehat {{A_1}} = \widehat {{C_1}}\), mà hai góc này ở vị trí so le trong nên CP//AB hay CP//BM
Lại có: \(CP = AM = BM\)
Tứ giác BMPC có: CP//BM, \(CP = BM\) nên tứ giác BMPC là hình bình hành. Do đó, MN//BC, \(MN = \frac{{BC}}{2}\).
Giải bài 3:
a) Tam giác ABC có E là trung điểm của AC, M là trung điểm của BC nên theo bài toán phụ ta có: \(ME = \frac{1}{2}AB = \frac{1}{2}.4 = 2\left( {cm} \right)\)
b) Tam giác ABC có E là trung điểm của AC, M là trung điểm của BC nên theo bài toán phụ ta có: ME//AB hay DE//AB
Tứ giác ABDE có: DE//AB (cmt), BD//EA (gt) nên tứ giác ABDE là hình bình hành.
Lại có: \(\widehat {BAE} = {90^0}\) nên ABDE là hình chữ nhật.
Vì: \(AE = \frac{1}{2}AC = 4cm = AB\) nên ABDE là hình vuông.
c) Vì E là trung điểm của AC nên \(EC = AE\), mà \(AE = BD\) (do ABDE là hình vuông), suy ra: \(EC = BD\)
Tứ giác BDCE có: \(EC = BD\) (cmt), EC//BD (gt) nên tứ giác BDCE là hình bình hành.
Bài 3 trang 71 sách bài tập Toán 8 Chân trời sáng tạo thuộc chương trình học về các hình khối trong không gian, cụ thể là hình lăng trụ đứng và hình chóp. Bài tập này yêu cầu học sinh vận dụng kiến thức về diện tích xung quanh, diện tích đáy và thể tích của các hình này để giải quyết các bài toán thực tế.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải bài 3 trang 71 một cách hiệu quả, bạn cần nắm vững các công thức sau:
Để giúp bạn hiểu rõ hơn, chúng ta sẽ cùng nhau giải chi tiết từng phần của bài 3 trang 71:
Bước 1: Xác định đáy của hình lăng trụ đứng. Đáy có thể là hình vuông, hình chữ nhật, hình tam giác,...
Bước 2: Tính chu vi đáy (P). Ví dụ, nếu đáy là hình vuông có cạnh a, thì P = 4a.
Bước 3: Xác định chiều cao của hình lăng trụ đứng (h).
Bước 4: Áp dụng công thức tính diện tích xung quanh: P.h.
Bước 1: Xác định đáy của hình chóp. Đáy có thể là hình vuông, hình chữ nhật, hình tam giác,...
Bước 2: Tính diện tích đáy (S). Ví dụ, nếu đáy là hình vuông có cạnh a, thì S = a2.
Bước 3: Xác định chiều cao của hình chóp (h).
Bước 4: Áp dụng công thức tính thể tích: (1/3).S.h.
Để giải bài tập nhanh chóng và chính xác, bạn nên:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 3 trang 71 sách bài tập Toán 8 Chân trời sáng tạo. Hãy luyện tập thường xuyên để nắm vững kiến thức và đạt kết quả tốt nhất trong học tập. Chúc bạn thành công!