Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 29 Sách bài tập Toán 8 - Chân trời sáng tạo tập 2. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình ôn tập và làm bài tập Toán 8.
Chúng tôi sẽ cung cấp đáp án, phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Trong học kì I, số học sinh giỏi của lớp 8A bằng \(\frac{1}{8}\) số học sinh cả lớp. Sang học kì II, lớp có thêm 3 học sinh giỏi nữa, khi đó số học sinh giỏi trong học kì II bằng 20% số học sinh cả lớp. Hỏi lớp 8A có bao nhiêu học sinh?
Đề bài
Trong học kì I, số học sinh giỏi của lớp 8A bằng \(\frac{1}{8}\) số học sinh cả lớp. Sang học kì II, lớp có thêm 3 học sinh giỏi nữa, khi đó số học sinh giỏi trong học kì II bằng 20% số học sinh cả lớp. Hỏi lớp 8A có bao nhiêu học sinh?
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về các bước giải một bài toán bằng cách lập phương trình để giải bài:
Bước 1: Lập phương trình:
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số;
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;
- Lập phương trình biểu diễn mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình.
Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.
Lời giải chi tiết
Gọi số học sinh của lớp 8A là x (học sinh). Điều kiện: \(x \in \mathbb{N}*\)
Số học sinh giỏi của lớp học kì I là: \(\frac{1}{8}x\) (học sinh)
Số học sinh giỏi của lớp học kì II là: \(20\% x = \frac{1}{5}x\) (học sinh)
Vì học kì II lớp có thêm 3 học sinh giỏi nữa nên ta có phương trình:
\(\frac{1}{8}x + 3 = \frac{1}{5}x\)
\(\frac{3}{{40}}x = 3\)
\(x = 40\) (thỏa mãn)
Vậy số học sinh của lớp 8A là 40 học sinh.
Bài 6 trang 29 Sách bài tập Toán 8 - Chân trời sáng tạo tập 2 thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý liên quan đến hình thang cân để giải quyết các bài toán thực tế.
Bài 6 trang 29 thường bao gồm các dạng bài tập sau:
Để giải bài 6 trang 29 Sách bài tập Toán 8 - Chân trời sáng tạo tập 2 một cách hiệu quả, các em cần:
Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính độ dài đường cao AH của hình thang.
Giải:
Kẻ AH vuông góc với CD (H thuộc CD). Do ABCD là hình thang cân nên DH = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có: AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75.
Vậy AH = √29.75 ≈ 5.45cm.
Trong quá trình giải bài tập về hình thang cân, các em cần lưu ý:
Để học tốt môn Toán 8, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin hơn trong việc giải bài 6 trang 29 Sách bài tập Toán 8 - Chân trời sáng tạo tập 2. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!