Chào mừng các em học sinh đến với lời giải chi tiết bài 2 (7.31) trang 46, 47 Vở thực hành Toán 7 tập 2. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.
Chúng tôi tại giaitoan.edu.vn luôn cố gắng mang đến những tài liệu học tập chất lượng, giúp các em học Toán ngày càng tốt hơn.
Thực hiện các phép chia đa thức sau: a) (left( { - 5{x^3} + 15{x^2} + 18x} right):left( { - 5x} right)); b) (left( { - 2{x^5} - 4{x^3} + 3{x^2}} right):2{x^2}).
Đề bài
Thực hiện các phép chia đa thức sau:
a) \(\left( { - 5{x^3} + 15{x^2} + 18x} \right):\left( { - 5x} \right)\);
b) \(\left( { - 2{x^5} - 4{x^3} + 3{x^2}} \right):2{x^2}\).
Phương pháp giải - Xem chi tiết
Muốn chia một đa thức cho một đơn thức (phép chia hết), ta chia từng hạng tử của đa thức cho đơn thức rồi cộng các kết quả thu được.
Lời giải chi tiết
a) \(\left( { - 5{x^3} + 15{x^2} + 18x} \right):\left( { - 5x} \right)\)
\( = \left( { - 5{x^3}} \right):\left( { - 5x} \right) + 15{x^2}:\left( { - 5x} \right) + 18x:\left( { - 5x} \right)\)
\( = {x^2} - 3x - \frac{{18}}{5}\)
b) \(\left( { - 2{x^5} - 4{x^3} + 3{x^2}} \right):2{x^2}\)
\( = - 2{x^5}:2{x^2} - 4{x^3}:2{x^2} + 3{x^2}:2{x^2}\)
\( = - {x^3} - 2x + \frac{3}{2}\)
Bài 2 (7.31) trang 46, 47 Vở thực hành Toán 7 tập 2 thuộc chương trình học Toán 7, tập trung vào việc vận dụng các kiến thức về tỉ số, tỉ lệ thức để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các định nghĩa, tính chất và các quy tắc liên quan đến tỉ số, tỉ lệ thức, đồng thời rèn luyện kỹ năng giải toán một cách logic và chính xác.
Bài 2 (7.31) trang 46, 47 Vở thực hành Toán 7 tập 2 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng dạng bài tập cụ thể.
Để tìm tỉ số của hai đại lượng, ta thực hiện phép chia đại lượng thứ nhất cho đại lượng thứ hai. Ví dụ, nếu chiều dài của một hình chữ nhật là 10cm và chiều rộng là 5cm, thì tỉ số giữa chiều dài và chiều rộng là 10/5 = 2.
Để kiểm tra hai tỉ số có bằng nhau hay không, ta thực hiện phép nhân chéo. Nếu tích của hai số hạng ở hai tỉ số bằng nhau, thì hai tỉ số đó bằng nhau. Ví dụ, nếu ta có hai tỉ số 2/3 và 4/6, thì ta thực hiện phép nhân chéo: 2 * 6 = 12 và 3 * 4 = 12. Vì 12 = 12, nên hai tỉ số 2/3 và 4/6 bằng nhau.
Tỉ lệ thức là đẳng thức giữa hai tỉ số. Để giải các bài toán liên quan đến tỉ lệ thức, ta sử dụng tính chất của tỉ lệ thức: Nếu a/b = c/d thì a*d = b*c. Ví dụ, nếu ta có tỉ lệ thức 2/x = 4/6, thì ta có thể giải phương trình 2*6 = x*4 để tìm ra giá trị của x.
Các bài toán thực tế thường yêu cầu học sinh phải vận dụng kiến thức về tỉ số, tỉ lệ thức để giải quyết các vấn đề liên quan đến cuộc sống hàng ngày. Ví dụ, bài toán về việc chia một số tiền theo tỉ lệ nhất định, hoặc bài toán về việc tính tỉ lệ bản đồ.
Bài 2 (7.31) trang 46, 47 Vở thực hành Toán 7 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về tỉ số, tỉ lệ thức. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em sẽ tự tin hơn khi giải quyết các bài toán tương tự.
Chúc các em học tập tốt!