Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 11 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, chính xác và dễ tiếp cận nhất cho học sinh. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!
Cho phương trình ax2 + bx + c = 0 (left( {a ne 0} right)). a) Khi (Delta = 0), phương trình có nghiệm kép ({x_1} = {x_2} = - frac{b}{a}). b) Khi (Delta = 0), phương trình có nghiệm kép ({x_1} = {x_2} = - frac{b}{{2a}}). c) Khi (Delta > 0), phương trình có hai nghiệm phân biệt: ({x_1} = frac{{ - b + sqrt Delta }}{{2a}},{x_2} = frac{{ - b - sqrt Delta }}{{2a}}.) d) Khi b = 2b’; (Delta ' = b' - ac > 0), phương trình có hai nghiệm phân biệt: ({x_1} = frac{
Đề bài
Chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Cho phương trình ax2 + bx + c = 0 \(\left( {a \ne 0} \right)\).
a) Khi \(\Delta = 0\), phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{a}\).
b) Khi \(\Delta = 0\), phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\).
c) Khi \(\Delta > 0\), phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}.\)
d) Khi b = 2b’; \(\Delta ' = b' - ac > 0\), phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b' + \sqrt \Delta }}{a},{x_2} = \frac{{ - b' - \sqrt \Delta }}{a}.\)
Phương pháp giải - Xem chi tiết
Dựa vào công thức nghiệm phương trình bậc hai:
Cho phương trình ax2 + bx + c = 0 (a \( \ne \)0) và biệt thức \(\Delta = {b^2} - 4ac\).
Nếu \(\Delta \)> 0 thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}.\)
Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).
*Công thức nghiệm thu gọn phương trình bậc hai:
Đặt \(\Delta ' = b{'^2} - ac(b = 2b')\). Khi đó:
Nếu \(\Delta \)’> 0 thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b' + \sqrt \Delta }}{a},{x_2} = \frac{{ - b' - \sqrt \Delta }}{a}.\)
Lời giải chi tiết
a) Sai vì \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\)
b) Đúng
c) Đúng
d) Sai vì \(\Delta ' = b{'^2} - ac(b = 2b')\)
Bài 11 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hệ số góc và đường thẳng song song, vuông góc.
Bài 11 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài 11 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2, học sinh cần nắm vững các kiến thức sau:
Câu a: Xác định hệ số góc của đường thẳng y = -3x + 5.
Hệ số góc của đường thẳng y = -3x + 5 là a = -3.
Câu b: Xác định hệ số góc của đường thẳng đi qua hai điểm A(1; 2) và B(3; 8).
Hệ số góc của đường thẳng đi qua hai điểm A(x1; y1) và B(x2; y2) được tính theo công thức: a = (y2 - y1) / (x2 - x1).
Áp dụng công thức, ta có: a = (8 - 2) / (3 - 1) = 6 / 2 = 3.
Câu c: Tìm m để đường thẳng y = (m - 1)x + 3 song song với đường thẳng y = 2x - 1.
Để hai đường thẳng song song, hệ số góc phải bằng nhau. Do đó, m - 1 = 2, suy ra m = 3.
Câu d: Tìm m để đường thẳng y = (2m + 1)x - 5 vuông góc với đường thẳng y = -x + 2.
Để hai đường thẳng vuông góc, tích của hệ số góc phải bằng -1. Do đó, (2m + 1) * (-1) = -1, suy ra 2m + 1 = 1, suy ra m = 0.
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Bài 11 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và các tính chất của nó. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, bạn sẽ tự tin hơn trong quá trình học tập và giải bài tập.
Câu hỏi | Đáp án |
---|---|
Câu a | a = -3 |
Câu b | a = 3 |
Câu c | m = 3 |
Câu d | m = 0 |