Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 40 sách bài tập toán 9 - Chân trời sáng tạo tập 1

Giải bài 4 trang 40 sách bài tập toán 9 - Chân trời sáng tạo tập 1

Giải bài 4 trang 40 Sách bài tập Toán 9 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 40 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Tìm x, biết: a) (sqrt x = 9) b) (sqrt x = sqrt 5 ) c) (3sqrt x = 1) d) (2sqrt {x + 1} = 12)

Đề bài

Tìm x, biết:

a) \(\sqrt x = 9\)

b) \(\sqrt x = \sqrt 5 \)

c) \(3\sqrt x = 1\)

d) \(2\sqrt {x + 1} = 12\)

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 40 sách bài tập toán 9 - Chân trời sáng tạo tập 1 1

Dựa vào: Số x là căn bậc hai của số thực a \( \ge \) 0 nếu x2 = a.

Mỗi số dương có đúng hai căn bậc hai là \(\sqrt a \) và - \(\sqrt a \).

Lời giải chi tiết

a) \(\sqrt x = 9\)

\(\begin{array}{l}{\left( {\sqrt x } \right)^2} = {\left( 9 \right)^2}\\x = 81\end{array}\)

b) \(\sqrt x = \sqrt 5 \)

\(\begin{array}{l}{\left( {\sqrt x } \right)^2} = {\left( {\sqrt 5 } \right)^2}\\x = 5\end{array}\)

c) \(3\sqrt x = 1\)

\(\begin{array}{l}{\left( {\sqrt x } \right)^2} = {\left( {\frac{1}{3}} \right)^2}\\x = \frac{1}{9}\end{array}\)

d) \(2\sqrt {x + 1} = 12\)

\(\begin{array}{l}\sqrt {x + 1} = 6\\{\left( {\sqrt {x + 1} } \right)^2} = {6^2}\\x + 1 = 36\\x = 35\end{array}\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 4 trang 40 sách bài tập toán 9 - Chân trời sáng tạo tập 1 đặc sắc thuộc chuyên mục sách bài tập toán 9 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 4 trang 40 Sách bài tập Toán 9 - Chân trời sáng tạo tập 1: Tổng quan

Bài 4 trang 40 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.

Nội dung bài tập

Bài 4 thường bao gồm các dạng bài sau:

  • Dạng 1: Xác định hàm số bậc nhất. Cho biết các yếu tố của hàm số (ví dụ: hệ số góc, tung độ gốc) và yêu cầu viết phương trình hàm số.
  • Dạng 2: Tính giá trị của hàm số. Cho hàm số và một giá trị của biến độc lập, yêu cầu tính giá trị tương ứng của biến phụ thuộc.
  • Dạng 3: Ứng dụng hàm số vào giải quyết bài toán thực tế. Ví dụ: Bài toán về quãng đường, thời gian, vận tốc.

Lời giải chi tiết bài 4 trang 40

Để giải bài 4 trang 40 sách bài tập Toán 9 - Chân trời sáng tạo tập 1, bạn cần nắm vững các kiến thức sau:

  1. Khái niệm hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0.
  2. Hệ số góc và tung độ gốc: a là hệ số góc, b là tung độ gốc.
  3. Cách xác định hàm số: Sử dụng hai điểm thuộc đồ thị hàm số hoặc sử dụng hệ số góc và một điểm thuộc đồ thị hàm số.
  4. Cách tính giá trị của hàm số: Thay giá trị của biến độc lập vào phương trình hàm số để tính giá trị tương ứng của biến phụ thuộc.

Ví dụ minh họa (giả định):

Giả sử bài 4 yêu cầu xác định hàm số bậc nhất đi qua hai điểm A(1; 2) và B(2; 5).

Giải:

Gọi hàm số cần tìm là y = ax + b.

Thay tọa độ điểm A(1; 2) vào phương trình, ta được: 2 = a(1) + b => a + b = 2 (1)

Thay tọa độ điểm B(2; 5) vào phương trình, ta được: 5 = a(2) + b => 2a + b = 5 (2)

Giải hệ phương trình (1) và (2), ta được: a = 3 và b = -1.

Vậy hàm số cần tìm là y = 3x - 1.

Mẹo giải bài tập hàm số bậc nhất

  • Vẽ đồ thị hàm số: Vẽ đồ thị hàm số giúp bạn hình dung rõ hơn về tính chất của hàm số và dễ dàng tìm ra lời giải.
  • Sử dụng công thức: Nắm vững các công thức liên quan đến hàm số bậc nhất để áp dụng vào giải bài tập.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 9 - Chân trời sáng tạo tập 1 hoặc trên các trang web học toán online.

Kết luận

Bài 4 trang 40 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn sẽ tự tin hơn khi giải các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 9