Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 47 sách bài tập Toán 9 - Chân trời sáng tạo tập 1. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình ôn tập và làm bài tập Toán 9.
Chúng tôi sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu sắc kiến thức và tự tin giải quyết các bài toán tương tự.
Tính giá trị các biểu thức: a) A = (sqrt {64} + sqrt {{{left( { - 8} right)}^2}} ) b) B = ( - sqrt {{{left( { - frac{3}{7}} right)}^2}} + {left( { - sqrt {frac{{10}}{7}} } right)^2}) c) C = (sqrt {{{left( {2 - sqrt 5 } right)}^2}} + sqrt {{{left( {5 - sqrt 5 } right)}^2}} ) d) D = (sqrt {{{left( { - 5} right)}^2}} + sqrt {{{left( { - 3} right)}^4}} + sqrt {{2^6}} )
Đề bài
Tính giá trị các biểu thức:
a) A = \(\sqrt {64} + \sqrt {{{\left( { - 8} \right)}^2}} \)
b) B = \( - \sqrt {{{\left( { - \frac{3}{7}} \right)}^2}} + {\left( { - \sqrt {\frac{{10}}{7}} } \right)^2}\)
c) C = \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} + \sqrt {{{\left( {5 - \sqrt 5 } \right)}^2}} \)
d) D = \(\sqrt {{{\left( { - 5} \right)}^2}} + \sqrt {{{\left( { - 3} \right)}^4}} + \sqrt {{2^6}} \)
Phương pháp giải - Xem chi tiết
Dựa vào: Với mọi số thực a, ta có \(\sqrt {{a^2}} = \left| a \right|\).
Lời giải chi tiết
a) A = \(\sqrt {64} + \sqrt {{{\left( { - 8} \right)}^2}} \)
A = \(8 + \left| { - 8} \right| = 16\).
b) B = \( - \sqrt {{{\left( { - \frac{3}{7}} \right)}^2}} + {\left( { - \sqrt {\frac{{10}}{7}} } \right)^2}\)
B = \( - \frac{3}{7} + \frac{{10}}{7} = 1\).
c) C = \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} + \sqrt {{{\left( {5 - \sqrt 5 } \right)}^2}} \)
C = \(\left| {2 - \sqrt 5 } \right| + \left| {5 - \sqrt 5 } \right| \)
C = \(= \sqrt 5 - 2 + 5 - \sqrt 5 = 3\) (do 2 < \(\sqrt 5 \) < 5).
d) D = \(\sqrt {{{\left( { - 5} \right)}^2}} + \sqrt {{{\left( { - 3} \right)}^4}} + \sqrt {{2^6}} \)
D = \(\left| { - 5} \right| + {3^2} + {2^3} = 22\).
Bài 1 trang 47 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để xác định hệ số góc và đường thẳng song song, vuông góc.
Bài tập bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng câu hỏi cụ thể:
Đường thẳng có dạng y = ax + b. Hệ số góc của đường thẳng là a. Để xác định a, ta cần tìm hai điểm thuộc đường thẳng và áp dụng công thức tính hệ số góc: a = (y2 - y1) / (x2 - x1).
Ví dụ, nếu đường thẳng đi qua hai điểm A(x1, y1) và B(x2, y2), thì hệ số góc a được tính như sau:
a = (y2 - y1) / (x2 - x1)
Hai đường thẳng y = a1x + b1 và y = a2x + b2 song song khi và chỉ khi a1 = a2 và b1 ≠ b2. Điều này có nghĩa là hai đường thẳng có cùng hệ số góc nhưng khác tung độ gốc.
Hai đường thẳng y = a1x + b1 và y = a2x + b2 vuông góc khi và chỉ khi a1 * a2 = -1. Điều này có nghĩa là tích của hai hệ số góc bằng -1.
Để giải các bài tập về hàm số bậc nhất một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Cho đường thẳng y = 2x - 3. Hãy xác định hệ số góc của đường thẳng này.
Giải:
Hệ số góc của đường thẳng y = 2x - 3 là a = 2.
Để củng cố kiến thức, các em có thể tự giải thêm các bài tập tương tự trong sách bài tập Toán 9 - Chân trời sáng tạo tập 1. Ngoài ra, các em cũng có thể tham khảo các bài giảng trực tuyến hoặc tìm kiếm sự giúp đỡ từ giáo viên và bạn bè.
Bài 1 trang 47 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp các em hiểu sâu hơn về hàm số bậc nhất. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng mà giaitoan.edu.vn cung cấp, các em sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.
Khái niệm | Giải thích |
---|---|
Hàm số bậc nhất | y = ax + b (a ≠ 0) |
Hệ số góc | a, thể hiện độ dốc của đường thẳng |
Đường thẳng song song | a1 = a2 và b1 ≠ b2 |
Đường thẳng vuông góc | a1 * a2 = -1 |