Bài 9 trang 41 sách bài tập Toán 9 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về phương trình bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9 trang 41 sách bài tập Toán 9 Chân trời sáng tạo tập 1, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Tìm x để căn thức xác định: a) (sqrt {2x + 7} ) b) (sqrt {12 - 3x} ) c) (sqrt {frac{1}{{x - 4}}} ) d) (sqrt {{x^2} + 1} )
Đề bài
Tìm x để căn thức xác định:
a) \(\sqrt {2x + 7} \)
b) \(\sqrt {12 - 3x} \)
c) \(\sqrt {\frac{1}{{x - 4}}} \)
d) \(\sqrt {{x^2} + 1} \)
Phương pháp giải - Xem chi tiết
Dựa vào: Căn thức \(\sqrt A \) xác định khi A nhận giá trị không âm.
Lời giải chi tiết
a) \(\sqrt {2x + 7} \)
ĐKXĐ:
\(\begin{array}{l}2x + 7 \ge 0\\x \ge \frac{{ - 7}}{2}\end{array}\)
b) \(\sqrt {12 - 3x} \)
ĐKXĐ:
\(\begin{array}{l}12 - 3x \ge 0\\3x \le 12\\x \le 4\end{array}\)
c) \(\sqrt {\frac{1}{{x - 4}}} \)
ĐKXĐ:
\(\begin{array}{l}\frac{1}{{x - 4}} \ge 0\\x - 4 > 0\\x > 4\end{array}\)
d) \(\sqrt {{x^2} + 1} \)
Với mọi x ta đều có \({x^2} \ge 0\), do đó \({x^2} + 1 > 0\). Suy ra căn thức đã cho xác định với mọi số thực x.
Bài 9 trang 41 sách bài tập Toán 9 Chân trời sáng tạo tập 1 thuộc chương trình học về phương trình bậc hai. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 9 trang 41, chúng ta sẽ đi vào phân tích từng phần của bài tập. Bài tập này thường bao gồm các dạng câu hỏi sau:
Ví dụ: Giải phương trình 2x2 - 5x + 2 = 0
Giải:
Để củng cố kiến thức và kỹ năng giải phương trình bậc hai, các em học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập Toán 9 Chân trời sáng tạo tập 1 và các nguồn tài liệu khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin hơn khi làm bài kiểm tra.
Bài 9 trang 41 sách bài tập Toán 9 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình bậc hai. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ tự tin hơn khi giải quyết bài tập này và đạt kết quả tốt trong môn Toán.