Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Giải bài 4 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Giải bài 4 trang 7 Sách bài tập Toán 9 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 4 trang 7 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho hàm số y = ( - frac{{{x^2}}}{2}). a) Vẽ đồ thị hàm số. b) Đường thẳng y = ax + b cắt đồ thị của hàm số đã cho tại hai điểm A và B có hoành độ lần lượt bằng 1 và – 2. Hãy xác định a và b.

Đề bài

Cho hàm số y = \( - \frac{{{x^2}}}{2}\).

a) Vẽ đồ thị hàm số.

b) Đường thẳng y = ax + b cắt đồ thị của hàm số đã cho tại hai điểm A và B có hoành độ lần lượt bằng 1 và – 2. Hãy xác định a và b.

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2 1

Lập bảng giá trị của hàm số.

Vẽ đồ thị hàm số.

Thay toạ độ điểm A và B để lập hệ phương trình.

Lời giải chi tiết

a) Bảng giá trị của hàm số:

Giải bài 4 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2 2

Đồ thị hàm số y = \( - \frac{{{x^2}}}{2}\) là một đường parabol đỉnh O đi qua các điểm A(-4;-8), B(-2;-2), O(0;0), B’(2;-2), A’(4;-8) như hình dưới.

Giải bài 4 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2 3

b) Thay toạ độ của điểm A(1; yA) vào \(y = - \frac{{{x^2}}}{2}\), ta được \({y_A} = - \frac{1}{2}\). Vậy \(A\left( {1; - \frac{1}{2}} \right)\).

Tương tự, ta tìm được B(-2; -2).

Điểm \(A\left( {1; - \frac{1}{2}} \right)\) thuộc đường thẳng y = ax + b.

Thay x = 1; y = \( - \frac{1}{2}\) vào y = ax + b, ta được a + b = \( - \frac{1}{2}\) (1)

Điểm B(-2; -2) thuộc đường thẳng y = ax + b.

Thay x = - 2; y = - 2 vào y = ax + b, ta được -2a + b = -2 (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{a + b = - \frac{1}{2}}\\{ - 2a + b = - 2}\end{array}} \right.\)

Giải hệ phương trình, ta được: \(a = \frac{1}{2},b = - 1\).

Vậy y = \(\frac{1}{2}x - 1\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 4 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2 đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng đề thi toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 4 trang 7 Sách bài tập Toán 9 - Chân trời sáng tạo tập 2: Tổng quan

Bài 4 trang 7 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.

Nội dung bài tập

Bài 4 thường bao gồm các dạng bài sau:

  • Dạng 1: Xác định hàm số bậc nhất. Cho biết các yếu tố của hàm số (ví dụ: hệ số góc, tung độ gốc) hoặc các điểm mà hàm số đi qua, yêu cầu xác định phương trình hàm số.
  • Dạng 2: Tính giá trị của hàm số. Cho hàm số bậc nhất và một giá trị của biến độc lập, yêu cầu tính giá trị tương ứng của biến phụ thuộc.
  • Dạng 3: Ứng dụng hàm số bậc nhất vào bài toán thực tế. Ví dụ: Bài toán về quãng đường, thời gian, vận tốc; bài toán về giá cả, số lượng.

Lời giải chi tiết bài 4 trang 7

Để giải bài 4 trang 7 sách bài tập Toán 9 - Chân trời sáng tạo tập 2, bạn cần nắm vững các kiến thức sau:

  1. Khái niệm hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0.
  2. Hệ số góc và tung độ gốc: a là hệ số góc, b là tung độ gốc.
  3. Cách xác định hàm số bậc nhất:
    • Nếu biết hai điểm mà hàm số đi qua, ta có thể thay tọa độ của hai điểm vào phương trình y = ax + b để tìm a và b.
    • Nếu biết hệ số góc a và một điểm mà hàm số đi qua, ta có thể thay tọa độ của điểm đó vào phương trình y = ax + b để tìm b.
  4. Cách tính giá trị của hàm số: Thay giá trị của biến độc lập vào phương trình hàm số để tính giá trị tương ứng của biến phụ thuộc.

Ví dụ minh họa:

Giả sử bài tập yêu cầu xác định hàm số bậc nhất đi qua hai điểm A(1; 2) và B(2; 4). Ta thực hiện như sau:

Thay tọa độ điểm A vào phương trình y = ax + b, ta được: 2 = a(1) + b => a + b = 2 (1)

Thay tọa độ điểm B vào phương trình y = ax + b, ta được: 4 = a(2) + b => 2a + b = 4 (2)

Giải hệ phương trình (1) và (2), ta được: a = 2 và b = 0. Vậy hàm số bậc nhất cần tìm là y = 2x.

Mẹo giải bài tập

  • Đọc kỹ đề bài để xác định đúng yêu cầu của bài tập.
  • Vẽ hình minh họa (nếu cần thiết) để giúp hiểu rõ bài toán.
  • Sử dụng các công thức và kiến thức đã học một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, bạn có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 9 - Chân trời sáng tạo tập 2 và các nguồn tài liệu khác.

Kết luận

Bài 4 trang 7 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn sẽ tự tin hơn khi giải các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 9