Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Giải bài 3 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Giải bài 3 trang 7 Sách bài tập Toán 9 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 3 trang 7 trong sách bài tập Toán 9 - Chân trời sáng tạo tập 2.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải một cách cẩn thận, kèm theo các bước giải thích rõ ràng, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Cho parabol (P): y = (frac{3}{2})x2 và đường thẳng d: y = 3x. a) Vẽ (P) và d trên cùng một mặt phẳng toạ độ Oxy. b) Dựa vào hình vẽ, tìm toạ độ giao điểm của (P) và d.

Đề bài

Cho parabol (P): y = \(\frac{3}{2}\)x2 và đường thẳng d: y = 3x.

a) Vẽ (P) và d trên cùng một mặt phẳng toạ độ Oxy.

b) Dựa vào hình vẽ, tìm toạ độ giao điểm của (P) và d.

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2 1

Lập bảng giá trị của hàm số.

Vẽ đồ thị hàm số.

Nhìn đồ thị để kết luận.

Lời giải chi tiết

a) Đồ thị hàm số y = \(\frac{3}{2}\)x2 là một đường parabol đỉnh O đi qua các điểm A(-2;6), \(B\left( { - 1;\frac{3}{2}} \right)\), O(0;0), \(B'\left( {1;\frac{3}{2}} \right)\), A’(2;6).

Đồ thị hàm số y = 3x là đường thẳng đi qua các điểm O(0;0) và A’(2;6).

Đồ thị của hai hàm số y = \(\frac{3}{2}\)x2 và y = 3x được vẽ như hình dưới.

Giải bài 3 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2 2

b) Dựa vào hình vẽ, ta có các giao điểm của (P) và d là O(0;0) và A’(2;6).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 3 trang 7 sách bài tập toán 9 - Chân trời sáng tạo tập 2 đặc sắc thuộc chuyên mục giải bài tập toán 9 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 3 trang 7 Sách bài tập Toán 9 - Chân trời sáng tạo tập 2: Tổng quan

Bài 3 trang 7 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về xác định hàm số, tính giá trị của hàm số tại một điểm cho trước, và tìm điều kiện để hàm số đồng biến hoặc nghịch biến. Việc nắm vững các khái niệm này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung bài 3 trang 7

Bài 3 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hàm số bậc nhất. Học sinh cần xác định các hệ số a và b trong hàm số y = ax + b dựa vào các thông tin cho trước.
  • Dạng 2: Tính giá trị của hàm số. Cho một giá trị của x, học sinh cần tính giá trị tương ứng của y.
  • Dạng 3: Tìm điều kiện để hàm số đồng biến hoặc nghịch biến. Học sinh cần xác định giá trị của a để hàm số đồng biến (a > 0) hoặc nghịch biến (a < 0).
  • Dạng 4: Ứng dụng hàm số bậc nhất vào giải quyết các bài toán thực tế. Các bài toán này thường liên quan đến việc mô tả mối quan hệ giữa hai đại lượng bằng hàm số bậc nhất.

Lời giải chi tiết bài 3 trang 7

Để giúp bạn hiểu rõ hơn về cách giải bài 3 trang 7, chúng tôi sẽ trình bày lời giải chi tiết cho từng dạng bài tập:

Ví dụ 1: Xác định hàm số bậc nhất

Cho hàm số y = (m - 2)x + 3. Tìm giá trị của m để hàm số là hàm số bậc nhất.

Lời giải:

Để hàm số y = (m - 2)x + 3 là hàm số bậc nhất, thì hệ số a phải khác 0. Do đó, ta có:

m - 2 ≠ 0

m ≠ 2

Vậy, với m ≠ 2, hàm số y = (m - 2)x + 3 là hàm số bậc nhất.

Ví dụ 2: Tính giá trị của hàm số

Cho hàm số y = 2x - 1. Tính giá trị của y khi x = 3.

Lời giải:

Thay x = 3 vào hàm số y = 2x - 1, ta được:

y = 2 * 3 - 1 = 6 - 1 = 5

Vậy, khi x = 3, thì y = 5.

Ví dụ 3: Tìm điều kiện để hàm số đồng biến hoặc nghịch biến

Cho hàm số y = (k + 1)x + 2. Tìm giá trị của k để hàm số đồng biến.

Lời giải:

Để hàm số y = (k + 1)x + 2 đồng biến, thì hệ số a phải lớn hơn 0. Do đó, ta có:

k + 1 > 0

k > -1

Vậy, với k > -1, hàm số y = (k + 1)x + 2 đồng biến.

Mẹo giải bài tập hàm số bậc nhất

  • Nắm vững định nghĩa hàm số bậc nhất: y = ax + b, trong đó a ≠ 0.
  • Hiểu rõ tính chất đồng biến và nghịch biến của hàm số: Hàm số đồng biến khi a > 0, nghịch biến khi a < 0.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng giải toán.
  • Sử dụng các công cụ hỗ trợ: Các trang web giải toán online như giaitoan.edu.vn có thể giúp bạn kiểm tra đáp án và hiểu rõ hơn về cách giải.

Kết luận

Bài 3 trang 7 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 9