Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 2 trang 50 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Khử mẫu của biểu thức lấy căn: a) (sqrt {frac{{10}}{{11}}} ) b) (sqrt {frac{{42}}{{300}}} ) c) (sqrt {frac{{5a}}{{12b}}} (a ge 0;b > 0))
Đề bài
Khử mẫu của biểu thức lấy căn:
a) \(\sqrt {\frac{{10}}{{11}}} \)
b) \(\sqrt {\frac{{42}}{{300}}} \)
c) \(\sqrt {\frac{{5a}}{{12b}}} (a \ge 0;b > 0)\)
Phương pháp giải - Xem chi tiết
Dựa vào: \(\frac{{\sqrt a }}{{\sqrt b }} = \frac{{\sqrt a .\sqrt b }}{{{{\left( {\sqrt b } \right)}^2}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
\(\sqrt {\frac{a}{b}} = \sqrt {\frac{{ab}}{{{b^2}}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
Lời giải chi tiết
a) \(\sqrt {\frac{{10}}{{11}}} = \frac{{\sqrt {10} .\sqrt {11} }}{{\sqrt {11} .\sqrt {11} }} = \frac{{\sqrt {110} }}{{11}}\).
b) \(\sqrt {\frac{{42}}{{300}}} = \sqrt {\frac{{14}}{{100}}} = \frac{{\sqrt {14} }}{{10}}\).
c) \(\sqrt {\frac{{5a}}{{12b}}} = \sqrt {\frac{{5a3b}}{{4.3b.3b}}} = \sqrt {\frac{{15ab}}{{{2^2}{{.3}^2}b{}^2}}} = \frac{{\sqrt {15ab} }}{{6b}}(a \ge 0;b > 0)\).
Bài 2 trang 50 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài 2 thường bao gồm các dạng bài sau:
Để giải bài tập về hàm số bậc nhất, bạn cần nắm vững các kiến thức sau:
Ví dụ 1: Xác định hàm số bậc nhất có hệ số góc bằng 2 và đi qua điểm A(1; 3).
Giải:
Hàm số bậc nhất có dạng y = ax + b. Vì hệ số góc a = 2, ta có y = 2x + b. Thay tọa độ điểm A(1; 3) vào phương trình, ta được: 3 = 2(1) + b => b = 1. Vậy hàm số cần tìm là y = 2x + 1.
Ví dụ 2: Cho hàm số y = -x + 5. Tính giá trị của y khi x = -2.
Giải:
Thay x = -2 vào phương trình hàm số, ta được: y = -(-2) + 5 = 2 + 5 = 7. Vậy khi x = -2 thì y = 7.
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, bạn có thể luyện tập thêm với các bài tập tương tự trong sách bài tập Toán 9 - Chân trời sáng tạo tập 1 hoặc trên các trang web học toán online.
Khi giải bài tập về hàm số bậc nhất, bạn nên:
Bài 2 trang 50 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả.