Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 44 sách bài tập toán 9 - Chân trời sáng tạo tập 1

Giải bài 8 trang 44 sách bài tập toán 9 - Chân trời sáng tạo tập 1

Giải bài 8 trang 44 Sách bài tập Toán 9 - Chân trời sáng tạo tập 1

Chào mừng các em học sinh đến với lời giải chi tiết bài 8 trang 44 sách bài tập Toán 9 - Chân trời sáng tạo tập 1. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình ôn tập và làm bài tập Toán 9.

Chúng tôi sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để các em hiểu rõ bản chất của bài toán.

Chu kì T (thời gian để hoàn thành một quỹ đạo, đơn vị: giây) của một vệ tinh nhân tạo có quỹ đạo là đường tròn và bán kính R (đơn vị: m) của quỹ đạo đó có mối liên hệ (frac{{{T^2}}}{{{R^3}}} = frac{{4{pi ^2}}}{{GM}}), trong đó, (G = frac{{6,673}}{{{{10}^{11}}}}) Nm2/kg2 là hằng số hấp dẫn, M = 5,98.1024 kg là khối lượng Trái Đất. a) Viết công thức tính R theo T, G và M. b) Tính R khi T bằng 24 giờ (chu kì của vệ tinh địa tĩnh). Làm tròn kết quả đến hàng phần trăm của kilomet.

Đề bài

Chu kì T (thời gian để hoàn thành một quỹ đạo, đơn vị: giây) của một vệ tinh nhân tạo có quỹ đạo là đường tròn và bán kính R (đơn vị: m) của quỹ đạo đó có mối liên hệ \(\frac{{{T^2}}}{{{R^3}}} = \frac{{4{\pi ^2}}}{{GM}}\), trong đó, \(G = \frac{{6,673}}{{{{10}^{11}}}}\) Nm2/kg2 là hằng số hấp dẫn, M = 5,98.1024 kg là khối lượng Trái Đất.

a) Viết công thức tính R theo T, G và M.

b) Tính R khi T bằng 24 giờ (chu kì của vệ tinh địa tĩnh). Làm tròn kết quả đến hàng phần trăm của kilomet.

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 44 sách bài tập toán 9 - Chân trời sáng tạo tập 1 1

Từ \(\frac{{{T^2}}}{{{R^3}}} = \frac{{4{\pi ^2}}}{{GM}}\) rút R theo T, G và M.

Thay T = 24 giờ = 86400 giây vào công thức R vừa rút được.

Lời giải chi tiết

a) \(\frac{{{T^2}}}{{{R^3}}} = \frac{{4{\pi ^2}}}{{GM}}\), suy ra \({R^3} = \frac{{GM{T^2}}}{{4{\pi ^2}}},\)suy ra R = \(\sqrt[3]{{\frac{{GM{T^2}}}{{4{\pi ^2}}}}}\).

b) Khi T = 24 giờ = 86400 giây, ta có:

\(\begin{array}{l}R = \sqrt[3]{{\frac{{GM{T^2}}}{{4{\pi ^2}}}}} = \sqrt[3]{{\frac{{{{6,673.5,98.10}^{24}}{{.86400}^2}}}{{{{10}^{11}}.4{\pi ^2}}}}} \\= \sqrt[3]{{\frac{{{{6,673.5,98.10}^{13}}{{.86400}^2}}}{{4{\pi ^2}}}}}\\ \approx 42256808(m) \approx 42300,81(km).\end{array}\)

Vậy R \( \approx \) 42300,81 km.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 8 trang 44 sách bài tập toán 9 - Chân trời sáng tạo tập 1 đặc sắc thuộc chuyên mục sgk toán 9 trên nền tảng đề thi toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 8 trang 44 Sách bài tập Toán 9 - Chân trời sáng tạo tập 1: Tổng quan

Bài 8 trang 44 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.

Nội dung bài 8 trang 44 Sách bài tập Toán 9 - Chân trời sáng tạo tập 1

Bài 8 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hàm số bậc nhất dựa vào các thông tin cho trước (ví dụ: hệ số góc, điểm thuộc đồ thị).
  • Dạng 2: Tính giá trị của hàm số bậc nhất tại một điểm cho trước.
  • Dạng 3: Ứng dụng hàm số bậc nhất vào giải các bài toán thực tế.

Hướng dẫn giải chi tiết bài 8 trang 44 Sách bài tập Toán 9 - Chân trời sáng tạo tập 1

Để giải bài 8 trang 44 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 một cách hiệu quả, các em cần nắm vững các kiến thức sau:

  1. Khái niệm hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0.
  2. Hệ số góc: a là hệ số góc của đường thẳng biểu diễn hàm số bậc nhất.
  3. Điểm thuộc đồ thị hàm số: Nếu điểm (x0; y0) thuộc đồ thị hàm số y = ax + b thì y0 = ax0 + b.

Ví dụ minh họa giải bài 8 trang 44 Sách bài tập Toán 9 - Chân trời sáng tạo tập 1

Ví dụ 1: Xác định hàm số bậc nhất y = ax + b biết đồ thị của hàm số đi qua hai điểm A(0; 2) và B(1; 5).

Giải:

Vì đồ thị của hàm số đi qua điểm A(0; 2) nên ta có: 2 = a * 0 + b => b = 2.

Vì đồ thị của hàm số đi qua điểm B(1; 5) nên ta có: 5 = a * 1 + b => 5 = a + 2 => a = 3.

Vậy hàm số bậc nhất cần tìm là y = 3x + 2.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 9 - Chân trời sáng tạo tập 1 và các nguồn tài liệu tham khảo khác.

Lời khuyên

Trong quá trình giải bài tập, các em nên:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Vận dụng linh hoạt các kiến thức đã học để giải quyết bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Kết luận

Bài 8 trang 44 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp các em hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trong bài viết này, các em sẽ học tập tốt hơn môn Toán 9.

Dạng bàiPhương pháp giải
Xác định hàm sốSử dụng tọa độ điểm thuộc đồ thị để tìm hệ số a và b.
Tính giá trị hàm sốThay giá trị x vào công thức hàm số để tính y.

Tài liệu, đề thi và đáp án Toán 9