Bài 4 trang 16 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học về hàm số bậc nhất để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4 trang 16 sách bài tập Toán 9 - Chân trời sáng tạo tập 2, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho phương trình (a{x^2} + bx + c = 0(a ne 0)) có (Delta = {b^2} - 4ac = 0). Khi đó, phương trình có hai nghiệm là A. ({x_1} = {x_2} = - frac{b}{{2a}}) B. ({x_1} = {x_2} = - frac{b}{a}) C. ({x_1} = {x_2} = frac{b}{{2a}}) D. ({x_1} = {x_2} = frac{b}{a})
Đề bài
Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(\Delta = {b^2} - 4ac = 0\). Khi đó, phương trình có hai nghiệm là
A. \({x_1} = {x_2} = - \frac{b}{{2a}}\)
B. \({x_1} = {x_2} = - \frac{b}{a}\)
C. \({x_1} = {x_2} = \frac{b}{{2a}}\)
D. \({x_1} = {x_2} = \frac{b}{a}\)
Phương pháp giải - Xem chi tiết
Dựa vào công thức nghiệm phương trình bậc hai:
Cho phương trình ax2 + bx + c = 0 (a \( \ne \)0) và biệt thức \(\Delta = {b^2} - 4ac\).
Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).
Lời giải chi tiết
Theo công thức nghiệm phương trình bậc hai : Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).
Chọn đáp án A.
Bài 4 trang 16 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc nhất. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Phương pháp giải bài tập thường bao gồm các bước sau:
Đề bài: (Nội dung đề bài cụ thể sẽ được chèn vào đây. Ví dụ: Cho hàm số y = 2x - 3. Tìm tọa độ giao điểm của đồ thị hàm số với trục Ox và trục Oy.)
Lời giải:
Để tìm tọa độ giao điểm của đồ thị hàm số y = 2x - 3 với trục Ox, ta cho y = 0 và giải phương trình:
0 = 2x - 3
=> 2x = 3
=> x = 3/2
Vậy tọa độ giao điểm của đồ thị hàm số với trục Ox là (3/2, 0).
Để tìm tọa độ giao điểm của đồ thị hàm số y = 2x - 3 với trục Oy, ta cho x = 0 và tính y:
y = 2 * 0 - 3
=> y = -3
Vậy tọa độ giao điểm của đồ thị hàm số với trục Oy là (0, -3).
Để củng cố kiến thức về hàm số bậc nhất và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo các bài tập tương tự sau:
Các em có thể tự giải các bài tập này hoặc tìm kiếm lời giải chi tiết trên Giaitoan.edu.vn.
Hàm số bậc nhất có rất nhiều ứng dụng trong thực tế, ví dụ như:
Việc nắm vững kiến thức về hàm số bậc nhất sẽ giúp các em giải quyết các bài toán thực tế một cách dễ dàng và hiệu quả.
Bài 4 trang 16 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các bài tập luyện tập trên, các em sẽ nắm vững kiến thức và tự tin làm bài tập.