Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 10 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho phương trình 5x2 – 7x + 2 = 0. a) Phương trình có a – b + c = 0 nên có hai nghiệm phân biệt là: ({x_1} = - 1;{x_2} = - frac{c}{a} = - frac{2}{5}). b) Phương trình có a + b + c = 0 nên có hai nghiệm phân biệt là: ({x_1} = 1;{x_2} = frac{c}{a} = frac{2}{5}). c) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó (x_1^2 + x_2^2 = - frac{{29}}{{25}}). d) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó (x_1^2 + x_2^2 = frac{{29}}{{25}}).
Đề bài
Chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Cho phương trình 5x2 – 7x + 2 = 0.
a) Phương trình có a – b + c = 0 nên có hai nghiệm phân biệt là: \({x_1} = - 1;{x_2} = - \frac{c}{a} = - \frac{2}{5}\).
b) Phương trình có a + b + c = 0 nên có hai nghiệm phân biệt là: \({x_1} = 1;{x_2} = \frac{c}{a} = \frac{2}{5}\).
c) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó \(x_1^2 + x_2^2 = - \frac{{29}}{{25}}\).
d) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó \(x_1^2 + x_2^2 = \frac{{29}}{{25}}\).
Phương pháp giải - Xem chi tiết
Dựa vào: Nếu phương trình bậc hai ax2 + bx + c = 0 (a\( \ne \)0) trong đó
* a + b + c = 0 thì phương trình bậc hai luôn luôn có hai nghiệm phân biệt là:\({x_1} = 1;{x_2} = \frac{c}{a}\).
* a - b + c = 0 thì phương trình bậc hai luôn luôn có hai nghiệm phân biệt là: \({x_1} = - 1;{x_2} = - \frac{c}{a}\).
Nếu phương trình bậc hai ax2 + bx + c = 0 (a\( \ne \)0) có nghiệm x1, x2 thì tổng và tích của hai nghiệm đó là:
\(S = {x_1} + {x_2} = - \frac{b}{a};P = {x_1}.{x_2} = \frac{c}{a}\)
Lời giải chi tiết
Phương trình 5x2 – 7x + 2 = 0 có a – b + c = 5 + (-7) + 2 = 0 nên có hai nghiệm phân biệt là: \({x_1} = 1;{x_2} = \frac{c}{a} = \frac{2}{5}\).
Phương trình 5x2 – 7x + 2 = 0 có hai nghiệm phân biệt x1; x2.
Theo định lí Viète, ta có
\(S = {x_1} + {x_2} = - \frac{b}{a} = \frac{7}{5};P = {x_1}{x_2} = \frac{c}{a} = \frac{2}{5}\).
Ta có:
\(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \\= {S^2} - 2P \\= {\left( {\frac{7}{5}} \right)^2} - 2.\frac{2}{5} \\= \frac{{29}}{{25}}.\)
a) Sai
b) Đúng
c) Sai
d) Đúng
Bài 10 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài 10 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thường bao gồm các dạng bài sau:
Để giải bài tập về hàm số bậc nhất, học sinh cần nắm vững các kiến thức sau:
Để cung cấp lời giải chi tiết cho bài 10 trang 17, chúng ta cần biết nội dung cụ thể của bài tập. Tuy nhiên, dựa trên các dạng bài tập thường gặp, chúng ta có thể đưa ra một ví dụ minh họa:
Cho hàm số y = 2x - 1. Tính giá trị của y khi x = 3.
Lời giải:
Thay x = 3 vào hàm số y = 2x - 1, ta được:
y = 2 * 3 - 1 = 6 - 1 = 5
Vậy, khi x = 3 thì y = 5.
Để củng cố kiến thức về hàm số bậc nhất, bạn có thể luyện tập thêm các bài tập sau:
Bài 10 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng rằng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải các bài tập tương tự.
Khái niệm | Mô tả |
---|---|
Hàm số bậc nhất | y = ax + b (a ≠ 0) |
Hệ số a | Xác định độ dốc của đường thẳng |
Hệ số b | Xác định giao điểm của đường thẳng với trục tung |