Logo Header
  1. Môn Toán
  2. Giải bài 10 trang 17 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Giải bài 10 trang 17 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Giải bài 10 trang 17 Sách bài tập Toán 9 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 10 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho phương trình 5x2 – 7x + 2 = 0. a) Phương trình có a – b + c = 0 nên có hai nghiệm phân biệt là: ({x_1} = - 1;{x_2} = - frac{c}{a} = - frac{2}{5}). b) Phương trình có a + b + c = 0 nên có hai nghiệm phân biệt là: ({x_1} = 1;{x_2} = frac{c}{a} = frac{2}{5}). c) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó (x_1^2 + x_2^2 = - frac{{29}}{{25}}). d) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó (x_1^2 + x_2^2 = frac{{29}}{{25}}).

Đề bài

Chọn đúng hoặc sai cho mỗi ý a), b), c), d).

Cho phương trình 5x2 – 7x + 2 = 0.

a) Phương trình có a – b + c = 0 nên có hai nghiệm phân biệt là: \({x_1} = - 1;{x_2} = - \frac{c}{a} = - \frac{2}{5}\).

b) Phương trình có a + b + c = 0 nên có hai nghiệm phân biệt là: \({x_1} = 1;{x_2} = \frac{c}{a} = \frac{2}{5}\).

c) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó \(x_1^2 + x_2^2 = - \frac{{29}}{{25}}\).

d) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó \(x_1^2 + x_2^2 = \frac{{29}}{{25}}\).

Phương pháp giải - Xem chi tiếtGiải bài 10 trang 17 sách bài tập toán 9 - Chân trời sáng tạo tập 2 1

Dựa vào: Nếu phương trình bậc hai ax2 + bx + c = 0 (a\( \ne \)0) trong đó

* a + b + c = 0 thì phương trình bậc hai luôn luôn có hai nghiệm phân biệt là:\({x_1} = 1;{x_2} = \frac{c}{a}\).

* a - b + c = 0 thì phương trình bậc hai luôn luôn có hai nghiệm phân biệt là: \({x_1} = - 1;{x_2} = - \frac{c}{a}\).

Nếu phương trình bậc hai ax2 + bx + c = 0 (a\( \ne \)0) có nghiệm x1, x2 thì tổng và tích của hai nghiệm đó là:

\(S = {x_1} + {x_2} = - \frac{b}{a};P = {x_1}.{x_2} = \frac{c}{a}\)

Lời giải chi tiết

Phương trình 5x2 – 7x + 2 = 0 có a – b + c = 5 + (-7) + 2 = 0 nên có hai nghiệm phân biệt là: \({x_1} = 1;{x_2} = \frac{c}{a} = \frac{2}{5}\).

Phương trình 5x2 – 7x + 2 = 0 có hai nghiệm phân biệt x1; x2.

Theo định lí Viète, ta có

\(S = {x_1} + {x_2} = - \frac{b}{a} = \frac{7}{5};P = {x_1}{x_2} = \frac{c}{a} = \frac{2}{5}\).

Ta có:

\(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \\= {S^2} - 2P \\= {\left( {\frac{7}{5}} \right)^2} - 2.\frac{2}{5} \\= \frac{{29}}{{25}}.\)

a) Sai

b) Đúng

c) Sai

d) Đúng

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 10 trang 17 sách bài tập toán 9 - Chân trời sáng tạo tập 2 đặc sắc thuộc chuyên mục giải bài tập toán 9 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 10 trang 17 Sách bài tập Toán 9 - Chân trời sáng tạo tập 2: Tổng quan

Bài 10 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.

Nội dung bài tập

Bài 10 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thường bao gồm các dạng bài sau:

  • Xác định hàm số bậc nhất: Cho một số dữ kiện về hàm số (ví dụ: đồ thị, hai điểm thuộc đồ thị), yêu cầu xác định hàm số có dạng y = ax + b.
  • Tính giá trị của hàm số: Cho hàm số y = ax + b và một giá trị của x, yêu cầu tính giá trị tương ứng của y.
  • Ứng dụng hàm số vào bài toán thực tế: Đưa ra một bài toán thực tế liên quan đến hàm số bậc nhất, yêu cầu học sinh xây dựng mô hình toán học và giải bài toán.

Phương pháp giải bài tập

Để giải bài tập về hàm số bậc nhất, học sinh cần nắm vững các kiến thức sau:

  • Định nghĩa hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực.
  • Đồ thị của hàm số bậc nhất: Đồ thị của hàm số bậc nhất là một đường thẳng.
  • Cách xác định hàm số bậc nhất: Có thể xác định hàm số bậc nhất bằng cách sử dụng đồ thị, hai điểm thuộc đồ thị hoặc các thông tin khác về hàm số.
  • Cách tính giá trị của hàm số: Thay giá trị của x vào công thức y = ax + b để tính giá trị tương ứng của y.

Lời giải chi tiết bài 10 trang 17

Để cung cấp lời giải chi tiết cho bài 10 trang 17, chúng ta cần biết nội dung cụ thể của bài tập. Tuy nhiên, dựa trên các dạng bài tập thường gặp, chúng ta có thể đưa ra một ví dụ minh họa:

Ví dụ:

Cho hàm số y = 2x - 1. Tính giá trị của y khi x = 3.

Lời giải:

Thay x = 3 vào hàm số y = 2x - 1, ta được:

y = 2 * 3 - 1 = 6 - 1 = 5

Vậy, khi x = 3 thì y = 5.

Luyện tập thêm

Để củng cố kiến thức về hàm số bậc nhất, bạn có thể luyện tập thêm các bài tập sau:

  • Bài 11 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2
  • Bài 12 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2
  • Các bài tập tương tự trên các trang web học toán online khác.

Kết luận

Bài 10 trang 17 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng rằng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải các bài tập tương tự.

Bảng tổng hợp kiến thức

Khái niệmMô tả
Hàm số bậc nhấty = ax + b (a ≠ 0)
Hệ số aXác định độ dốc của đường thẳng
Hệ số bXác định giao điểm của đường thẳng với trục tung

Tài liệu, đề thi và đáp án Toán 9