Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 2 trang 67 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Có 4 viên bi được ghi số lần lượt là 1; 2; 3; 4 và được xếp thành một hàng ngang như hình bên. Bạn Thọ lấy ra ngẫu nhiên lần lượt 2 viên bi trong 4 viên bi đó, viên bi lấy ra lần thứ nhất không được hoàn lại trước lấy lần thứ hai. a) Số phần tử của không gian mẫu của phép thử là A. 3 B. 4 C. 6 D. 12 b) Xác suất của biến cố “Hai viên bi được chọn được xếp cạnh nhau” là A. (frac{1}{2}) B. (frac{1}{3}) C. (frac{1}{4}) D. (frac{1}{6}) c) Xác suất của biến cố “Tích các số trên
Đề bài
Có 4 viên bi được ghi số lần lượt là 1; 2; 3; 4 và được xếp thành một hàng ngang như hình bên. Bạn Thọ lấy ra ngẫu nhiên lần lượt 2 viên bi trong 4 viên bi đó, viên bi lấy ra lần thứ nhất không được hoàn lại trước lấy lần thứ hai.
a) Số phần tử của không gian mẫu của phép thử là
A. 3
B. 4
C. 6
D. 12
b) Xác suất của biến cố “Hai viên bi được chọn được xếp cạnh nhau” là
A. \(\frac{1}{2}\)
B. \(\frac{1}{3}\)
C. \(\frac{1}{4}\)
D. \(\frac{1}{6}\)
c) Xác suất của biến cố “Tích các số trên 2 viên bi được chọn là số lẻ” là
A. \(\frac{1}{2}\)
B. \(\frac{1}{3}\)
C. \(\frac{1}{4}\)
D. \(\frac{1}{6}\)
d) Xác suất của biến cố “Số của viên bi lấy ra lần thứ hai lớn hơn số của viên bi lấy ra lần thứ nhất” là
A. \(\frac{1}{2}\)
B. \(\frac{1}{3}\)
C. \(\frac{1}{4}\)
D. \(\frac{1}{6}\)
Phương pháp giải - Xem chi tiết
Không gian mẫu là tập hợp tất cả các kết quả có thể xảy ra của phép thử.
Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Trong phép thử ngẫu nhiên, hai kết quả đồng khả năng nếu chúng có khả năng xảy ra như nhau.
Xác suất của biến cố A được tính bởi công thức:
\(P(A) = \frac{{n(A)}}{{n(\Omega )}}\), trong đó n(A) là số kết quả thuận lợi cho A; \(n(\Omega )\) là số các kết quả có thể xảy ra.
Lời giải chi tiết
Số kết quả có thể xảy ra là \(n\left( \Omega \right) = 12\) kết quả.
Các kết quả thuận lợi cho biến cố “Hai viên bi được chọn được xếp cạnh nhau” là (1;2),(2;3),(3;4),(2;1),(3;2),(4;3).
Số kết quả thuận lợi cho biến cố “Hai viên bi được chọn được xếp cạnh nhau” là n(A) = 6.
Xác suất của biến cố “Hai viên bi được chọn được xếp cạnh nhau” là P(A) = \(\frac{6}{{12}} = \frac{1}{2}.\)
Các kết quả thuận lợi cho biến cố “Tích các số trên 2 viên bi được chọn là số lẻ” là (1;3),(3;1).
Số kết quả thuận lợi cho biến cố “Tích các số trên 2 viên bi được chọn là số lẻ” là n(B) = 2.
Xác suất của biến cố “Tích các số trên 2 viên bi được chọn là số lẻ” là P(B) = \(\frac{2}{{12}} = \frac{1}{6}\).
Các kết quả thuận lợi cho biến cố “Số của viên bi lấy ra lần thứ hai lớn hơn số của viên bi lấy ra lần thứ nhất” là (1;2),(1;3),(1;4),(2;3),(2;4),(3;4).
Số kết quả thuận lợi cho biến cố “Số của viên bi lấy ra lần thứ hai lớn hơn số của viên bi lấy ra lần thứ nhất” là n(C) = 6.
Xác suất của biến cố “Số của viên bi lấy ra lần thứ hai lớn hơn số của viên bi lấy ra lần thứ nhất” là
P(C) = \(\frac{6}{{12}} = \frac{1}{2}.\)
a) Chọn đáp án D.
b) Chọn đáp án A.
c) Chọn đáp án D.
d) Chọn đáp án A.
Bài 2 trang 67 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về xác định hàm số, tính giá trị của hàm số tại một điểm cho trước, và giải các bài toán liên quan đến ứng dụng của hàm số bậc nhất trong thực tế.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 67 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 một cách hiệu quả, bạn cần:
Bài toán: Cho hàm số y = 2x - 3. Tính giá trị của y khi x = 1.
Giải:
Thay x = 1 vào hàm số y = 2x - 3, ta được:
y = 2 * 1 - 3 = -1
Vậy, khi x = 1 thì y = -1.
Khi giải các bài toán về hàm số bậc nhất, bạn cần chú ý đến các điểm sau:
Để củng cố kiến thức về bài 2 trang 67, bạn có thể tự giải các bài tập sau:
Bài 2 trang 67 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể tự tin giải bài tập này. Chúc bạn học tập tốt!
Dạng bài | Phương pháp giải |
---|---|
Xác định hàm số | Sử dụng các thông tin đề bài để tìm a và b |
Tính giá trị hàm số | Thay x vào công thức y = ax + b |
Ứng dụng hàm số | Lập phương trình biểu diễn mối quan hệ giữa các đại lượng |