Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 11 trang 16 sách bài tập Toán 9 - Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu nhất, đồng thời giải thích rõ ràng các khái niệm toán học liên quan. Mục tiêu của chúng tôi là giúp bạn không chỉ tìm được đáp án mà còn hiểu được bản chất của vấn đề.
Giải các phương trình: a) (frac{3}{{x + 1}} + frac{5}{{x - 2}} = frac{{5x + 8}}{{(x - 2)(x + 1)}}) b) (frac{5}{{3x - 2}} + frac{2}{{x(3x - 2)}} = frac{7}{x}) c) (frac{2}{{x - 2}} + frac{3}{{x + 2}} = frac{{3x - 4}}{{{x^2} - 4}}) d) (frac{{x - 3}}{{x + 3}} - frac{{x + 3}}{{x - 3}} = frac{{ - 36}}{{{x^2} - 9}})
Đề bài
Giải các phương trình:
a) \(\frac{3}{{x + 1}} + \frac{5}{{x - 2}} = \frac{{5x + 8}}{{(x - 2)(x + 1)}}\)
b) \(\frac{5}{{3x - 2}} + \frac{2}{{x(3x - 2)}} = \frac{7}{x}\)
c) \(\frac{2}{{x - 2}} + \frac{3}{{x + 2}} = \frac{{3x - 4}}{{{x^2} - 4}}\)
d) \(\frac{{x - 3}}{{x + 3}} - \frac{{x + 3}}{{x - 3}} = \frac{{ - 36}}{{{x^2} - 9}}\)
Phương pháp giải - Xem chi tiết
Dựa vào: Cách giải phương trình chứa ẩn ở mẫu:
B1: Tìm điều kiện xác định của phương trình
B2: Quy đồng mẫu thức hai vế của phương trình, rồi khử mẫu
B3: Giải phương trình vừa nhận được.
B4: Xét mỗi giá trị tìm được ở B3, giá trị nào thoả mãn điều kiện xác định thì đó là nghiệm của phương trình đã cho.
Lời giải chi tiết
a) Điều kiện xác định: \(x \ne {\rm{\{ }} - 1;2\} \)
Ta có: \(\frac{3}{{x + 1}} + \frac{5}{{x - 2}} = \frac{{5x + 8}}{{(x - 2)(x + 1)}}\)
\(\begin{array}{l}3(x - 2) + 5(x + 1) = 5x + 8\\3x - 6 + 5x + 5 = 5x + 8\\3x = 9\end{array}\)
x = 3 (thoả mãn điều kiện xác định).
Vậy nghiệm của phương trình đã cho là x = 3.
b) Điều kiện xác định: \(x \ne {\rm{\{ 0}};\frac{2}{3}\} \)
Ta có: \(\frac{5}{{3x - 2}} + \frac{2}{{x(3x - 2)}} = \frac{7}{x}\)
\(\begin{array}{l}5x + 2 = 7(3x - 2)\\5x + 2 = 21x - 14\\16x = 16\end{array}\)
x = 1 (thoả mãn điều kiện xác định).
Vậy nghiệm của phương trình đã cho là x = 1.
c) Điều kiện xác định: \(x \ne {\rm{\{ }} \pm 2\} \)
Ta có: \(\frac{2}{{x - 2}} + \frac{3}{{x + 2}} = \frac{{3x - 4}}{{{x^2} - 4}}\)
\(\begin{array}{l}2(x + 2) + 3(x - 2) = 3x - 4\\2x + 4 + 3x - 6 = 3x - 4\\2x = - 2\end{array}\)
x = - 1 (thoả mãn điều kiện xác định).
Vậy nghiệm của phương trình đã cho là x = - 1.
d) Điều kiện xác định: \(x \ne {\rm{\{ }} \pm 3\} \)
Ta có: \(\frac{{x - 3}}{{x + 3}} - \frac{{x + 3}}{{x - 3}} = \frac{{ - 36}}{{{x^2} - 9}}\)
\(\begin{array}{l}{(x - 3)^2} - {(x + 3)^2} = - 36\\12x = 36\end{array}\)
x = 3 (không thoả mãn điều kiện xác định).
Vậy phương trình đã cho vô nghiệm.
Bài 11 trang 16 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và ứng dụng của chúng trong giải quyết các bài toán thực tế. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:
Trước khi bắt tay vào giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài 11 trang 16 thường yêu cầu chúng ta:
Để cung cấp lời giải chi tiết, chúng ta cần xem xét từng phần của bài toán. Ví dụ, nếu bài toán yêu cầu xác định hàm số bậc nhất đi qua hai điểm A(x1, y1) và B(x2, y2), chúng ta có thể sử dụng công thức:
a = (y2 - y1) / (x2 - x1)
Sau khi tìm được giá trị của a, chúng ta có thể sử dụng tọa độ của một trong hai điểm A hoặc B để tìm giá trị của b theo công thức: y1 = ax1 + b.
Sau khi xác định được hàm số bậc nhất, chúng ta có thể vẽ đồ thị của hàm số bằng cách xác định các điểm thuộc đồ thị hoặc sử dụng các phương pháp vẽ đồ thị khác.
Giả sử bài toán yêu cầu tìm hàm số bậc nhất đi qua hai điểm A(1, 2) và B(2, 4). Chúng ta có thể giải như sau:
a = (4 - 2) / (2 - 1) = 2
Sử dụng điểm A(1, 2), ta có: 2 = 2 * 1 + b => b = 0
Vậy hàm số bậc nhất cần tìm là y = 2x.
Khi giải bài tập về hàm số bậc nhất, bạn cần lưu ý những điều sau:
Để hiểu sâu hơn về hàm số bậc nhất, bạn có thể tìm hiểu thêm về các chủ đề sau:
Để rèn luyện kỹ năng giải bài tập về hàm số bậc nhất, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 9 - Chân trời sáng tạo tập 1 hoặc trên các trang web học toán online.
Bài 11 trang 16 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và những lưu ý trên, bạn sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán tương tự.