Bài 14 trang 109 sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học về hàm số bậc nhất để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 14 trang 109, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Một vật thể rắn hình chữ C dạng nửa hình trụ có bán kính bên trong là 8 cm và độ dày đồng đều 1,6 cm và chiều cao 10 cm (Hình 3). Tính thể tích của vật thể (kết quả làm tròn đến hàng đơn vị của xăngtimet khối).
Đề bài
Một vật thể rắn hình chữ C dạng nửa hình trụ có bán kính bên trong là 8 cm và độ dày đồng đều 1,6 cm và chiều cao 10 cm (Hình 3). Tính thể tích của vật thể (kết quả làm tròn đến hàng đơn vị của xăngtimet khối).
Phương pháp giải - Xem chi tiết
Thể tích hình trụ: \(V = \pi {r^2}h\).
Lời giải chi tiết
Thể tích của vật thể là: \(V = \frac{1}{2}\left[ {\pi .{{(9,6)}^2}.10 - \pi {{.8}^2}.10} \right] \approx 442\) (cm3).
Trước khi đi vào giải chi tiết bài 14 trang 109, chúng ta cùng ôn lại một số kiến thức cơ bản về hàm số bậc nhất. Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0. Đồ thị của hàm số bậc nhất là một đường thẳng. Để vẽ đồ thị hàm số, ta cần xác định hai điểm thuộc đồ thị. Việc hiểu rõ các tính chất của hàm số bậc nhất là nền tảng để giải quyết các bài toán liên quan.
Bài 14 trang 109 yêu cầu chúng ta giải một bài toán thực tế liên quan đến hàm số bậc nhất. Đề bài thường mô tả một tình huống cụ thể, ví dụ như mối quan hệ giữa quãng đường đi được và thời gian, hoặc giữa số lượng sản phẩm và doanh thu. Nhiệm vụ của chúng ta là xây dựng hàm số biểu diễn mối quan hệ đó và sử dụng hàm số để trả lời các câu hỏi của đề bài.
Để giải bài 14 trang 109, chúng ta thực hiện các bước sau:
Ví dụ minh họa:
Giả sử đề bài cho: Một ô tô xuất phát từ A với vận tốc 60km/h. Hỏi sau 2 giờ ô tô cách A bao xa?
Giải:
Gọi s là quãng đường ô tô đi được sau thời gian t (giờ). Ta có hàm số s = 60t. Khi t = 2, ta có s = 60 * 2 = 120 (km). Vậy sau 2 giờ ô tô cách A 120km.
Ngoài bài 14 trang 109, còn rất nhiều bài tập tương tự liên quan đến hàm số bậc nhất. Các bài tập này có thể yêu cầu chúng ta:
Để giải các bài tập này, chúng ta cần nắm vững các kiến thức về hàm số bậc nhất, đặc biệt là cách vẽ đồ thị và các tính chất của đồ thị.
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em có thể luyện tập thêm các bài tập sau:
Bài 14 trang 109 Sách bài tập Toán 9 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp các em học sinh hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em sẽ tự tin giải quyết bài tập này và các bài tập tương tự.