Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 33 sách bài tập Toán 9 - Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Cho số thực x thoả mãn x2 < 9. Khẳng định nào sau đây đúng? A. x < 3 hoặc x > - 3 B. x < - 3 hoặc x > 3 C. x < 3 và x > - 3 D. x < - 3 và x > 3
Đề bài
Cho số thực x thoả mãn x2 < 9. Khẳng định nào sau đây đúng?
A. x < 3 hoặc x > - 3
B. x < - 3 hoặc x > 3
C. x < 3 và x > - 3
D. x < - 3 và x > 3
Phương pháp giải - Xem chi tiết
Dựa vào: Quy tắc luỹ thừa.
Lời giải chi tiết
x2 < 9
x2 < 32
\(\left\{ {\begin{array}{*{20}{c}}{x > - 3}\\{x < 3}\end{array}} \right.\)
Chọn đáp án C.
Bài tập 2 trang 33 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hệ số góc và đường thẳng song song.
Bài tập 2 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài tập 2 trang 33 hiệu quả, học sinh cần nắm vững các kiến thức sau:
Câu a: Xác định hệ số góc của đường thẳng y = -3x + 5.
Hệ số góc của đường thẳng y = -3x + 5 là a = -3.
Câu b: Xác định hệ số góc của đường thẳng đi qua hai điểm A(1; 2) và B(3; 8).
Hệ số góc của đường thẳng đi qua hai điểm A(x1; y1) và B(x2; y2) được tính theo công thức:
a = (y2 - y1) / (x2 - x1)
Thay x1 = 1, y1 = 2, x2 = 3, y2 = 8 vào công thức, ta được:
a = (8 - 2) / (3 - 1) = 6 / 2 = 3
Vậy hệ số góc của đường thẳng đi qua hai điểm A(1; 2) và B(3; 8) là 3.
Câu c: Tìm m để đường thẳng y = (m - 1)x + 3 song song với đường thẳng y = 2x - 1.
Để hai đường thẳng y = (m - 1)x + 3 và y = 2x - 1 song song, ta cần có:
m - 1 = 2 và 3 ≠ -1
Từ m - 1 = 2, ta suy ra m = 3.
Vậy m = 3 là giá trị cần tìm.
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:
Bài tập 2 trang 33 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và các ứng dụng của nó. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, các em sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán tương tự.