Bài 4 trang 44 sách bài tập Toán 9 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về phương trình bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4 trang 44, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tính giá trị của các biểu thức: a) (sqrt[3]{1} + sqrt[3]{{1000}}) b) (0,5sqrt[3]{{27000}} + 50sqrt[3]{{0,001}}) c) ({left( {2sqrt[3]{{13}}} right)^3} - 10sqrt[3]{{frac{1}{{125}}}}) d) ({left( { - 4sqrt[3]{{frac{1}{4}}}} right)^3})
Đề bài
Tính giá trị của các biểu thức:
a) \(\sqrt[3]{1} + \sqrt[3]{{1000}}\)
b) \(0,5\sqrt[3]{{27000}} + 50\sqrt[3]{{0,001}}\)
c) \({\left( {2\sqrt[3]{{13}}} \right)^3} - 10\sqrt[3]{{\frac{1}{{125}}}}\)
d) \({\left( { - 4\sqrt[3]{{\frac{1}{4}}}} \right)^3}\)
Phương pháp giải - Xem chi tiết
Dựa vào: Số x là căn bậc ba của số thực a nếu x3 = a.
Với mọi số thực a , luôn \({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\).
Lời giải chi tiết
a) \(\sqrt[3]{1} + \sqrt[3]{{1000}} = \sqrt[3]{{{1^3}}} + \sqrt[3]{{{{\left( {10} \right)}^3}}} = 1 + 10 = 11\).
b) \(0,5\sqrt[3]{{27000}} + 50\sqrt[3]{{0,001}}\)\( = 0,5\sqrt[3]{{{{\left( {30} \right)}^3}}} + 50\sqrt[3]{{{{\left( {0,1} \right)}^3}}} = 0,5.30 + 50.0,1 = 20\).
c) \({\left( {2\sqrt[3]{{13}}} \right)^3} - 10\sqrt[3]{{\frac{1}{{125}}}}\)\( = {2^3}.13 - 10.\sqrt[3]{{{{\left( {\frac{1}{5}} \right)}^3}}} = 8.13 - 10.\frac{1}{5} = 102\).
d) \({\left( { - 4\sqrt[3]{{\frac{1}{4}}}} \right)^3} = {\left( { - 4} \right)^3}.{\left( {\sqrt[3]{{\frac{1}{4}}}} \right)^3} = {\left( { - 4} \right)^3}.\frac{1}{4} = - 16\).
Bài 4 yêu cầu giải phương trình bậc hai. Cụ thể, phương trình được đưa ra là một phương trình bậc hai một ẩn, có dạng tổng quát ax2 + bx + c = 0. Để giải phương trình này, chúng ta cần xác định các hệ số a, b, và c, sau đó tính delta (Δ) để xác định số nghiệm của phương trình.
Có ba trường hợp xảy ra khi giải phương trình bậc hai:
Để giải bài 4 trang 44 sách bài tập Toán 9 - Chân trời sáng tạo tập 1, chúng ta thực hiện các bước sau:
Giả sử phương trình cần giải là 2x2 - 5x + 2 = 0. Ta có:
Tính delta: Δ = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9
Vì Δ > 0, phương trình có hai nghiệm phân biệt:
Vậy nghiệm của phương trình là x1 = 2 và x2 = 0.5.
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự sau:
Việc nắm vững phương pháp giải phương trình bậc hai là rất quan trọng trong chương trình Toán 9. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh sẽ tự tin hơn khi giải các bài tập liên quan đến phương trình bậc hai. Chúc các em học tốt!